Chap 2.5 Cardinality
How many elements? Can you list them in an ordered way so you don’t miss any of them?

- \(\{x \in Z | x \mod 5 = 0, \text{ and } 0 < x \leq 100\} \)
- \(\{x \in Z | x \mod 5 = 0\} \)
- All the subsets of \(\{x \in Z | x \mod 5 = 0\} \)

Test 1
- Closed book, closed notes, closed neighbor
- There will be a handout of formulas supplied
- Topics:
 - Reading covers - Chap. 1, 2, and 13.3
 - Logic, Sets, Functions, Sequences, Cardinality, DFA

Announcements
- Exam 1 is Tuesday, Oct. 1
- No class, Oct 3, No recitation Oct 4-7
- Prof. Rodger is out Sep 30-Oct 4
- There is Recitation: Sept 27-30.

CompSci 230
Discrete Math for Computer Science

\[
\begin{bmatrix}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
J \\
M \\
S
\end{bmatrix}
=
\begin{bmatrix}
100 \\
40 \\
0
\end{bmatrix}
\]

Sep 26, 2013

Prof. Rodger

Slides modified from Rosen
Cardinality

Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted $|A| = |B|$, if and only if there is a one-to-one correspondence (i.e., a bijection) from A to B.

- If there is a one-to-one function (i.e., an injection) from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq |B|$.

- When $|A| \leq |B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and write $|A| < |B|$.

Showing that a Set is Countable

- An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).

- The reason for this is that a one-to-one correspondence f from the set of positive integers to a set S can be expressed in terms of a sequence $a_1,a_2,...,a_n,...$ where $a_1 = f(1)$, $a_2 = f(2)$, ..., $a_n = f(n)$, ...

Hilbert’s Grand Hotel

The Grand Hotel (example due to David Hilbert) has countably infinite number of rooms, each occupied by a guest. We can always accommodate a new guest at this hotel. How is this possible?

Explanation: Because the rooms of Grand Hotel are countable, we can list them as Room 1, Room 2, Room 3, and so on. When a new guest arrives, we move the guest in Room 1 to Room 2, the guest in Room 2 to Room 3, and in general the guest in Room n to Room $n+1$, for all positive integers n. This frees up Room 1, which we assign to the new guest, and all the current guests still have rooms.

The hotel can also accommodate a countable number of new guests, all the guests on a countable number of buses where each bus contains a countable number of guests.
Showing that a Set is Countable

Example 1: Show that the set of positive even integers E is a countable set.

Solution: Let $f(x) = 2x$.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
\hline
2 & 4 & 6 & 8 & 10 & 12 & \ldots \\
\end{array}
\]

Then f is a bijection from \mathbb{N} to E since f is both one-to-one and onto. To show that it is one-to-one, suppose that $f(n) = f(m)$. Then $2n = 2m$, and so $n = m$. To see that it is onto, suppose that t is an even positive integer. Then $t = 2k$ for some positive integer k and $f(k) = t$.

The Positive Rational Numbers are Countable

Definition: A rational number can be expressed as the ratio of two integers p and q such that $q \neq 0$.

- $\frac{3}{4}$ is a rational number
- $\sqrt{2}$ is not a rational number.

Example 3: Show that the positive rational numbers are countable.

Solution: The positive rational numbers are countable since they can be arranged in a sequence:

r_1, r_2, r_3, \ldots

Does this work?

For p/q

- List all those numbers with $q=1$
 - $1/1, 2/1, 3/1, 4/1, 5/1, \ldots$
- Then list all those numbers with $q=2$
 - $1/2, 2/2, 2/3, 2/4, 2/5, \ldots$
- Then list all those numbers with $q=3$, etc
Solution for listing out all p/q

- List all s.t. \(p+q=2 \)
- Then all s.t. \(p+q=3 \)
- Then all s.t. \(p+q=4 \)
- Etc
- Why does this work?

Example - Strings

- Show that the set \(S \) of strings over the alphabet \{0,1\} is countable.
- What is \(S \)? Is \(S \) infinite?

Solution:

Example: Is the set of all Java programs countable?

- \(\Sigma \) = the set of all symbols in Java programs
- \(S \) is the set of all strings over the alphabet

The Real numbers are uncountable

- Proof(sketch) by diagonalization
- Suppose we can list out all the real numbers without missing any of them.
• List out all real numbers
• Claim we missed one!
• There is a number whose \(i \)th digit is different from the \(i \)th digit in the \(i \)th number.

\[
\begin{align*}
1 & \leftrightarrow 0 \cdot 3 9 7 2 0 4 8 1 7 \ldots \\
2 & \leftrightarrow 0 \cdot 5 2 6 6 1 3 8 0 9 \ldots \\
3 & \leftrightarrow 0 \cdot 4 9 8 3 1 0 1 2 3 \ldots \\
4 & \leftrightarrow 0 \cdot 2 7 5 4 1 8 8 3 1 \ldots \\
5 & \leftrightarrow 0 \cdot 0 0 2 2 0 0 0 2 5 \ldots \\
6 & \leftrightarrow 0 \cdot 9 9 9 9 0 4 6 8 1 \ldots \\
\vdots &
\end{align*}
\]

Matrices

• Examples:
 – Graph Theory - Express which vertices of a graph are connected by edges
 – Graphics
 • Represent a 3D object with a matrix
 • Project a 3D object onto a 2D screen
 • Optimal curve fitting
 – Transportation systems.
 – Communication networks
 – Economics and Game Theory
• For now, definition and basic operations

Matrix

Definition: A *matrix* is a rectangular array of numbers. A matrix with \(m \) rows and \(n \) columns is called an \(m \times n \) matrix.

 – The plural of matrix is *matrices*.
 – A matrix with the same number of rows as columns is called *square*.
 – Two matrices are *equal* if they have the same number of rows and the same number of columns and the corresponding entries in every position are equal.

\[
\begin{bmatrix}
1 & 1 \\
0 & 2 \\
1 & 3 \\
\end{bmatrix}
\]

Notation

• Let \(m \) and \(n \) be positive integers and let

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\]

• The \(i \)th row of \(A \) is the \(1 \times n \) matrix \([a_{i1}, a_{i2}, \ldots, a_{in}]\).
• The \(j \)th column of \(A \) is the \(m \times 1 \) matrix:

\[
\begin{bmatrix}
a_{1j} \\
a_{2j} \\
\vdots \\
a_{mj}
\end{bmatrix}
\]

• The \((i,j)\)th element or entry of \(A \) is the element \(a_{ij} \). We can use \(A = [a_{ij}] \) to denote the matrix with its \((i,j)\)th element equal to \(a_{ij} \).
Matrix Arithmetic: Addition

Definition: Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $m \times n$ matrices. The sum of A and B, denoted by $A + B$, is the $m \times n$ matrix that has $a_{ij} + b_{ij}$ as its (i,j)th element. In other words,

$$A + B = [a_{ij} + b_{ij}].$$

Example:

$$
\begin{bmatrix}
1 & 0 & -1 \\
2 & 2 & -3 \\
3 & 4 & 0
\end{bmatrix} +
\begin{bmatrix}
3 & 4 & -1 \\
1 & -3 & 0 \\
-1 & 1 & 2
\end{bmatrix} =
\begin{bmatrix}
4 & 4 & -2 \\
3 & -1 & -3 \\
2 & 5 & 2
\end{bmatrix}
$$

Note that matrices of different sizes can NOT be added.

Matrix Multiplication

Definition: Let A be an $m \times k$ matrix and B be a $k \times n$ matrix. The product of A and B, denoted by AB, is the $m \times n$ matrix that has its (i,j)th element equal to the sum of the products of the corresponding elements from the ith row of A and the jth column of B. In other words, if $AB = [c_{ij}]$ then $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj}$.

Example:

$$
\begin{bmatrix}
1 & 0 & 4 \\
2 & 1 & 1 \\
3 & 1 & 0 \\
0 & 2 & 2
\end{bmatrix} \times
\begin{bmatrix}
2 & 4 \\
1 & 1 \\
3 & 0 \\
2 & 2
\end{bmatrix} =
\begin{bmatrix}
14 & 4 \\
8 & 9 \\
7 & 13 \\
8 & 2
\end{bmatrix}
$$

Undefined when number of columns in the first matrix is not the same as number of rows in the second.

Illustration of Matrix Multiplication

- The Product of $A = [a_{ij}]$ and $B = [b_{ij}]$

$$
A =
\begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1k} \\
a_{21} & a_{22} & \ldots & a_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mk}
\end{bmatrix}
B =
\begin{bmatrix}
b_{11} & a_{12} & \ldots & b_{1j} & \ldots & b_{1n} \\
b_{21} & a_{22} & \ldots & b_{2j} & \ldots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
b_{k1} & a_{k2} & \ldots & b_{kj} & \ldots & b_{kn}
\end{bmatrix}
AB =
\begin{bmatrix}
c_{11} & c_{12} & \ldots & c_{1j} & \ldots & c_{1n} \\
c_{21} & c_{22} & \ldots & c_{2j} & \ldots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
c_{m1} & c_{m2} & \ldots & c_{mj} & \ldots & c_{mn}
\end{bmatrix}
$$

$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj}$

Example use of Matrix Multiplication

- Solving set of linear equations

$$J + M + S = 100 \quad \rightarrow \quad 1J + 1M + 1S = 100$$
$$-J + S = 40 \quad \rightarrow \quad -1J + 0M + 1S = 40$$
$$J + M - S = 0 \quad \rightarrow \quad 1J + 1M - 1S = 0$$

$$
\begin{bmatrix}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & -1
\end{bmatrix} \times
\begin{bmatrix}
J \\
M \\
S
\end{bmatrix} =
\begin{bmatrix}
100 \\
40 \\
0
\end{bmatrix}
$$
Is Matrix Multiplication Commutative

Example: Let \(A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \)

Does \(AB = BA \)?

Identity Matrix and Powers of Matrices

Definition: The *identity matrix of order* \(n \) is the \(m \times n \) matrix \(I_n = [\delta_{ij}] \), where \(\delta_{ij} = 1 \) if \(i = j \) and \(\delta_{ij} = 0 \) if \(i \neq j \).

\[
I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}
\]

\(AI_n = I_m A = A \)

when \(A \) is an \(m \times n \) matrix

Powers of square matrices can be defined. When \(A \) is an \(n \times n \) matrix, we have:

\[A^0 = I_n \quad A^r = A A A \cdots A \]

\(r \) times

Transposes of Matrices

Definition: Let \(A = [a_{ij}] \) be an \(m \times n \) matrix. The *transpose of* \(A \), denoted by \(A^t \), is the \(n \times m \) matrix obtained by interchanging the rows and columns of \(A \).

If \(A^t = [b_{ij}] \), then \(b_{ij} = a_{ji} \) for \(i = 1, 2, \ldots, n \)

and \(j = 1, 2, \ldots, m \).

The transpose of the matrix \(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \) is the matrix \(\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \)