Announcements

- Read for next time Chap. 4.1-4.3
- Finish Chapter 3 first, then start Chapter 4, number theory

Chap 3.3 - The Complexity of Algorithms

- Given an algorithm, how efficient is this algorithm for solving a problem given input of a particular size?
 - How much time does this algorithm use to solve a problem?
 - How much computer memory does this algorithm use to solve a problem?
- time complexity - analyze the time the algorithm uses to solve the problem given input of a particular size
- space complexity - analyze the computer memory the algorithm uses to solve the problem, given input of a particular size

The Complexity of Algorithms

- In this course, focus on time complexity.
- Measure time complexity in terms of the number of operations an algorithm uses
- Use big-O and big-Theta notation to estimate the time complexity
- Is it practical to use this algorithm to solve problems with input of a particular size?
- Compare the efficiency of different algorithms for solving the same problem.
Time Complexity

• For time complexity, determine the number of operations, such as comparisons and arithmetic operations (addition, multiplication, etc.).
• Ignore minor details, such as the “house keeping” aspects of the algorithm.
• Focus on the worst-case time complexity of an algorithm. Provides an upper bound.
• More difficult to determine the average case time complexity of an algorithm (average number of operations over all inputs of a particular size).

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm for finding the maximum element in a finite sequence.

```
procedure max(a_1, a_2, ..., a_n: integers)
    max := a_1
    for i := 2 to n
        if max < a_i then max := a_i
    return max {max is the largest element}
```

Solution: Count the number of comparisons.

Worst-Case Complexity of Linear Search

```
procedure linear search(x:integer, a_1, a_2, ..., a_n: distinct integers)
    i := 1
    while (i ≤ n and x ≠ a_i) do
        i := i + 1
    if i ≤ n then location := i
    else location := 0
    return location {location is the subscript of the term that equals x, or is 0 if x is not found}
```

Solution: Count the number of comparisons.

Average-Case Complexity of Linear Search

Example: average case performance of linear search

Solution: Assume the element is in the list and that the possible positions are equally likely.
Worst-Case Complexity of Binary Search

Procedure `binary search(x: integer, a1,a2,…,an: increasing integers)`

\[i := 1 \{ i is the left endpoint of interval \} \]
\[j := n \{ j is right endpoint of interval \} \]

While \(i < j \)

\[m := [(i+j)/2] \]

If \(x > a_m \) then \(i := m + 1 \)
Else \(j := m \)

If \(x = a_i \) then \(location := i \)
Else \(location := 0 \)

Return `location` {location is the subscript \(i \) of the term \(a_i \) equal to \(x \), or 0 if \(x \) is not found}

Solution: Assume \(n = 2^k \) elements. Note that \(k = \log n \).

Worst-Case Complexity of Bubble Sort

Procedure `bubblesort(a1,…,an: real numbers with \(n \geq 2 \))`

\[for \ i := 1 \ to \ n-1 \]
\[for \ j := 1 \ to \ n-i \]
\[\text{if } a_j > a_{j+1} \text{ then interchange } a_j \text{ and } a_{j+1} \]
\{ \(a_1,…,a_n \) is now in increasing order \}

Solution

Worst-Case Complexity of Insertion Sort

Procedure `insertion sort(a1,…,an: real numbers with \(n \geq 2 \))`

\[for \ j := 2 \ to \ n \]
\[i := 1 \]
\[\text{while } a_j > a_i \]
\[i := i + 1 \]
\[m := a_j \]
\[for \ k := 0 \ to \ j - i - 1 \]
\[a_{j+k} := a_{j+k-1} \]
\[a_i := m \]

Solution:

Stooge Sort

- \(n \) elements are in an array
- If the value at the end is smaller than the first element, swap them
- If there are three of more elements then:
 - Stooge sort the first 2/3 of the array
 - Stooge sort the last 2/3 of the array
 - Stooge sort the first 2/3 of the array again
- Else
 - Done
Worst case of BogoSort

• Also known as “StupidSort”

• n elements in an array.
• While (not in order)
 – Shuffle array

• Worst case:
• Average Case:

Matrix Multiplication Algorithm

• matrix multiplication algorithm; \(C = A \times B \) where \(C \) is an \(m \times n \) matrix that is the product of the \(m \times k \) matrix \(A \) and the \(k \times n \) matrix \(B \).

```
procedure matrix multiplication(A,B: matrices)
  for i := 1 to m
    for j := 1 to n
      c_{ij} := 0
      for q := 1 to k
        c_{ij} := c_{ij} + a_{iq} \times b_{qj}
  return C\{C = [c_{ij}] \text{ is the product of } A \text{ and } B\}
```

Complexity of Matrix Multiplication

Example: How many additions of integers and multiplications of integers are used by the matrix multiplication algorithm to multiply two \(n \times n \) matrices.

Solution

Matrix-Chain Multiplication

• Compute matrix-chain \(A_1A_2 \cdots A_n \) with fewest multiplications, where \(A_1, A_2, \cdots, A_n \) are \(m_1 \times m_2, m_2 \times m_3, \cdots, m_n \times m_{n+1} \) integer matrices. Matrix multiplication is associative.

Example: In which order should the integer matrices \(A_1A_2A_3 \) - where \(A_1 \) is \(30 \times 20 \) \(A_2 \) \(20 \times 40 \), \(A_3 \) \(40 \times 10 \) - be multiplied? Solution: two possible ways for \(A_1A_2A_3 \).
Understanding the Complexity of Algorithms

Table 1: Commonly Used Terminology for the Complexity of Algorithms.

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(1)$</td>
<td>Constant complexity</td>
</tr>
<tr>
<td>$\Theta(\log n)$</td>
<td>Logarithmic complexity</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>Linear complexity</td>
</tr>
<tr>
<td>$\Theta(n \log n)$</td>
<td>Linearithmic complexity</td>
</tr>
<tr>
<td>$\Theta(n^b)$</td>
<td>Polynomial complexity</td>
</tr>
<tr>
<td>$\Theta(b^n)$, where $b > 1$</td>
<td>Exponential complexity</td>
</tr>
<tr>
<td>$\Theta(n!)$</td>
<td>Factorial complexity</td>
</tr>
</tbody>
</table>

Times of more than 10^{100} years are indicated with an *.

Understanding the Complexity of Algorithms

Table 2: The Computer Time Used by Algorithms.

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>$\log n$</th>
<th>n</th>
<th>$n \log n$</th>
<th>n^2</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3×10^{-11} s</td>
<td>10^{-10} s</td>
<td>3×10^{-10} s</td>
<td>10^{-9} s</td>
<td>10^{-8} s</td>
<td>3×10^{-7} s</td>
</tr>
<tr>
<td>10^2</td>
<td>7×10^{-11} s</td>
<td>10^{-9} s</td>
<td>7×10^{-9} s</td>
<td>10^{-7} s</td>
<td>4×10^{11} yr</td>
<td>*</td>
</tr>
<tr>
<td>10^3</td>
<td>1.0×10^{-10} s</td>
<td>10^{-8} s</td>
<td>1×10^{-7} s</td>
<td>10^{-5} s</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>10^4</td>
<td>1.3×10^{-10} s</td>
<td>10^{-7} s</td>
<td>1×10^{-6} s</td>
<td>10^{-3} s</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>10^5</td>
<td>1.7×10^{-10} s</td>
<td>10^{-6} s</td>
<td>2×10^{-5} s</td>
<td>0.1 s</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>10^6</td>
<td>2×10^{-10} s</td>
<td>10^{-5} s</td>
<td>2×10^{-4} s</td>
<td>0.17 min</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

P Versus NP Problem

- *Tractable Problem:* There exists a polynomial time algorithm to solve this problem. These problems are said to belong to the *Class P*.
- *Intractable Problem:* There does not exist a polynomial time algorithm to solve this problem.
- *Unsolvable Problem:* No algorithm exists to solve this problem, e.g., halting problem.
- *Class NP:* Solution can be checked in polynomial time. But no polynomial time algorithm has been found for finding a solution to problems in this class.
- *NP Complete Class:* If you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class.

- The *P versus NP problem* asks whether the class *P = NP?* Are there problems whose solutions can be checked in polynomial time, but can not be solved in polynomial time?
 - Note that just because no one has found a polynomial time algorithm is different from showing that the problem can not be solved by a polynomial time algorithm.
- If a polynomial time algorithm for any of the problems in the NP complete class were found, then that algorithm could be used to obtain a polynomial time algorithm for every problem in the NP complete class.
 - Satisfiability (in Section 1.3) is an NP complete problem.
- It is generally believed that $P \neq NP$ since no one has been able to find a polynomial time algorithm for any of the problems in the NP complete class.
- The problem of P versus NP remains one of the most famous unsolved problems in mathematics (including theoretical computer science). The Clay Mathematics Institute has offered a prize of $1,000,000 for a solution.

Stephen Cook (Born 1939)