Announcements

- Read for next time Chap. 6.1-6.2
- Recitation on Friday and Monday
- Homework 5 due Tuesday

Strong Induction

- **Strong Induction:** To prove that \(P(n) \) is true for all positive integers \(n \), where \(P(n) \) is a propositional function, complete two steps:
 - **Basis Step:** Verify that the proposition \(P(1) \) is true.
 - **Inductive Step:** Show the conditional statement
 \[
 [P(1) \land P(2) \land \ldots \land P(k)] \rightarrow P(k + 1)
 \]
 holds for all positive integers \(k \).

Strong Induction and the Infinite Ladder

- Strong induction tells us that we can reach all rungs if:
 1. We can reach the first rung of the ladder.
 2. For every integer \(k \), if we can reach the first \(k \) rungs, then we can reach the \((k + 1)\)st rung.

To conclude that we can reach every rung by strong induction:
- **BASIS STEP:** \(P(1) \) holds
- **INDUCTIVE STEP:** Assume \(P(1) \land P(2) \land \ldots \land P(k) \) holds for an arbitrary integer \(k \) and show that \(P(k + 1) \) must also hold.

We will have then shown by strong induction that for every positive integer \(n \), \(P(n) \) holds, i.e., we can reach the \(n \)th rung of the ladder.
Proof using Strong Induction

Example: Suppose we can reach the first and second rungs of an infinite ladder, and we know that if we can reach a rung, then we can reach two rungs higher. Prove that we can reach every rung. (Try this with mathematical induction.)

Solution: Prove the result using strong induction.
- **BASIS STEP:** We can reach the first step.
- **INDUCTIVE STEP:** The inductive hypothesis is that we can reach the first \(k \) rungs, for any \(k \geq 2 \).

Which Form of Induction Should Be Used?

- Can always use strong induction instead of mathematical induction.
- (if it is simpler use mathematical induction).
- The principles of mathematical induction, strong induction, and the well-ordering property are all equivalent.
- Sometimes it is clear how to proceed using one of the three methods, but not the other two.

Completion of the proof of the Fundamental Theorem of Arithmetic

Example: Show that if \(n \) is an integer greater than 3, then \(n \) can be written as the product of primes.

Solution: Let \(P(n) \) be the proposition that \(n \) can be written as a product of primes.
- **BASIS STEP:** \(P(2) \) is true since 2 itself is prime.
- **INDUCTIVE STEP:** The inductive hypothesis is \(P(j) \) is true for all integers \(j \) with \(2 \leq j \leq k \).
- To show that \(P(k + 1) \) must be true under this assumption, two cases need to be considered:

Proof using Strong Induction

Example: Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Solution: Let \(P(n) \) be the proposition that postage of \(n \) cents can be formed using 4-cent and 5-cent stamps.
- **BASIS STEP:** \(P(12), P(13), P(14), \) and \(P(15) \) hold.
 - \(P(12) \) uses
 - \(P(13) \) uses
 - \(P(14) \) uses
 - \(P(15) \) uses
- **INDUCTIVE STEP:** The inductive hypothesis states that \(P(j) \) holds for \(12 \leq j \leq k \), where \(k \geq 15 \). Assuming the inductive hypothesis, it can be shown that \(P(k + 1) \) holds.
- Using the inductive hypothesis,
 To form postage of \(k + 1 \) cents,

Hence, \(P(n) \) holds for all \(n \geq 12 \).
Proof of Same Example using Mathematical Induction

Example: Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Solution: Let \(P(n) \) be the proposition that postage of \(n \) cents can be formed using 4-cent and 5-cent stamps.

– **BASIS STEP**: Postage of 12 cents can be formed using three 4-cent stamps.

– **INDUCTIVE STEP**: The inductive hypothesis \(P(k) \) for any positive integer \(k \) is that postage of \(k \) cents can be formed using 4-cent and 5-cent stamps. To show \(P(k + 1) \) where \(k \geq 12 \), we consider two cases:
 - If at least one 4-cent stamp has been used,
 - Otherwise, no 4-cent stamp have been used

Hence, \(P(n) \) holds for all \(n \geq 12 \).

Well-Ordering Property

- **Well-ordering property**: Every nonempty set of nonnegative integers has a least element.
- The well-ordering property is one of the axioms of the positive integers listed in Appendix 1.
- The well-ordering property can be used directly in proofs, as the next example illustrates.
- The well-ordering property can be generalized.
 - **Definition**: A set is well ordered if every subset has a least element.
 - \(\mathbb{N} \) is well ordered under \(\leq \).
 - The set of finite strings over an alphabet using lexicographic ordering is well ordered.
 - We will see a generalization of induction to sets other than the integers.

Well-Ordering Property

Example: Use the well-ordering property to prove the division algorithm, which states that if \(a \) is an integer and \(d \) is a positive integer, then there are unique integers \(q \) and \(r \) with \(0 \leq r < d \), such that \(a = dq + r \).

Solution: Let \(S \) be the set of nonnegative integers of the form \(a - dq \), where \(q \) is an integer. The set is nonempty since \(d \) can be made as large as needed.

– By the well-ordering property, \(S \) has a least element \(r = a - dq_0 \). The integer \(r \) is nonnegative. It also must be the case that \(r < d \). If it were not, then there would be a smaller nonnegative element in \(S \), namely, \(a - d(q_0 + 1) = a - dq_0 - d = r - d > 0 \).

– Therefore, there are integers \(q \) and \(r \) with \(0 \leq r < d \).
 (uniqueness of \(q \) and \(r \) is Exercise 37)

Sec 5.3 - Recursively Defined Functions

Definition: A recursive or inductive definition of a function consists of two steps.

– **BASIS STEP**: Specify the value of the function at zero.

– **RECURSIVE STEP**: Give a rule for finding its value at an integer from its values at smaller integers.

• A function \(f(n) \) is the same as a sequence \(a_0, a_1, \ldots \), where \(a_i \), where \(f(i) = a_i \). This was done using recurrence relations in Section 2.4.
Recursively Defined Functions

Example: Suppose f is defined by:
\[
f(0) = 3, \quad f(n + 1) = 2f(n) + 3
\]
Find $f(1), f(2), f(3), f(4)$

Solution:
- $f(1) = f(0) + 2 = 3 + 3 = 6$
- $f(2) = f(1) + 2 = 6 + 3 = 9$
- $f(3) = f(2) + 2 = 9 + 3 = 12$
- $f(4) = f(3) + 2 = 12 + 3 = 15$

Example: Give a recursive definition of the factorial function $n!$:

Solution:
\[
f(0) = 1, \quad f(n + 1) = (n + 1)f(n)
\]

Fibonacci Numbers

Example: The Fibonacci numbers are defined as follows:
\[
f_0 = 0, \quad f_1 = 1, \quad f_n = f_{n-1} + f_{n-2}
\]
Find f_2, f_3, f_4, f_5

- $f_2 = f_1 + f_0 = 1 + 0 = 1$
- $f_3 = f_2 + f_1 = 1 + 1 = 2$
- $f_4 = f_3 + f_2 = 2 + 1 = 3$
- $f_5 = f_4 + f_3 = 3 + 2 = 5$
Lamé’s Theorem: Let \(a \) and \(b \) be positive integers with \(a \geq b \). Then the number of divisions used by the Euclidian algorithm to find \(\text{gcd}(a,b) \) is less than or equal to five times the number of decimal digits in \(b \).

Proof: in book.

- As a consequence of Lamé’s Theorem, \(O(\log b) \) divisions are used by the Euclidian algorithm to find \(\text{gcd}(a,b) \) whenever \(a > b \).

Lamé’s Theorem was the first result in computational complexity

Recurcively Defined Sets and Structures

Recursive definitions of sets have two parts:
- The **basis step** specifies an initial collection of elements.
- The **recursive step** gives the rules for forming new elements in the set from those already known to be in the set.

- Sometimes the recursive definition has an **exclusion rule**, which specifies that the set contains nothing other than those elements specified in the basis step and generated by applications of the rules in the recursive step.
- We will always assume that the exclusion rule holds, even if it is not explicitly mentioned.
- We will later develop a form of induction, called **structural induction**, to prove results about recursively defined sets.

Strings

Definition: The set \(\Sigma^* \) of **strings** over the alphabet \(\Sigma \):
- **BASIS STEP:** \(\lambda \in \Sigma^* \) (\(\lambda \) is the empty string)
- **RECURSIVE STEP:** If \(w \) is in \(\Sigma^* \) and \(x \) is in \(\Sigma \), then \(wx \in \Sigma^* \).

Example: If \(\Sigma = \{0,1\} \), the strings in in \(\Sigma^* \) are the set of all bit strings:

Example: If \(\Sigma = \{a,b\} \), show that \(aab \) is in \(\Sigma^* \).
String Concatenation

Definition: Two strings can be combined via the operation of *concatenation*. Let Σ be a set of symbols and Σ^* be the set of strings formed from the symbols in Σ. We can define the concatenation of two strings, denoted by \cdot, recursively as follows.

BASIS STEP: If $w \in \Sigma^*$, then $w \cdot \lambda = w$.

RECURSIVE STEP: If $w_1 \in \Sigma^*$ and $w_2 \in \Sigma^*$ and $x \in \Sigma$, then $w \cdot (w_2x) = (w_1 \cdot w_2)x$.

- Often $w_1 \cdot w_2$ is written as $w_1 \cdot w_2$.
- If $w_1 = \text{abra}$ and $w_2 = \text{cadabra}$, the concatenation is abracadabra.

Length of a String

Example: Give a recursive definition of $l(w)$, the length of the string w.

Solution: The length of a string can be recursively defined by:

- $l(w) = \tau$;
- $l(wx) = l(w) + 1$ if $w \in \Sigma^*$ and $x \in \Sigma$.

Well-Formed Formulae in Propositional Logic

Definition: The set of well-formed formulae in propositional logic involving T, F, propositional variables, and operators from the set $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$.

BASIS STEP: T, F, s, where s is a propositional variable, are well-formed formulae.

RECURSIVE STEP: If E and F are well-formed formulae, then

- $((E \lor F) \rightarrow ((q \land F)))$ is a well-formed formula.
- $pq \land$ is not a well-formed formula.
Rooted Trees

Definition: The set of rooted trees, where a rooted tree consists of a set of vertices containing a distinguished vertex called the root, and edges connecting these vertices, can be defined recursively by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T_1, T_2, \ldots, T_n are disjoint rooted trees with roots r_1, r_2, \ldots, r_n, respectively. Then the graph formed by starting with a root r, which is not in any of the rooted trees T_1, T_2, \ldots, T_n, and adding an edge from r to each of the vertices r_1, r_2, \ldots, r_n, is also a rooted tree.

Building Up Rooted Trees

• Trees are studied extensively in Chapter 11.
• Next we look at a special type of tree, the full binary tree.

How do you construct this rooted tree recursively?

Full Binary Trees

Definition: The set of full binary trees can be defined recursively by these steps.

BASIS STEP: There is a full binary tree consisting of only a single vertex r.

RECURSIVE STEP: If T_1 and T_2 are disjoint full binary trees, there is a full binary tree, denoted by $T_1 \cdot T_2$, consisting of a root r together with edges connecting the root to each of the roots of the left subtree T_1 and the right subtree T_2.
Is this a full binary tree?

Building Up Full Binary Trees

What can you say about the nonleaf nodes in a full binary tree?

Induction and Recursively Defined Sets

Example: Show that the set S defined by specifying that $3 \in S$ and that if $x \in S$ and $y \in S$, then $x + y$ is in S, is the set of all positive integers that are multiples of 3.

Solution: Let A be the set of all positive integers divisible by 3. To prove that $A = S$, show that A is a subset of S and S is a subset of A.

- $A \subseteq S$: Let $P(n)$ be the statement that $3n$ belongs to S.

 BASIS STEP: By the second part of the recursive definition, $3 \in S$, by the first part of recursive definition.

 Hence, $P(k)$ is true.

- $S \subseteq A$:

 BASIS STEP by the first part of recursive definition, and
 INDUCTIVE STEP: The second part of the recursive definition

By part (i) of Theorem 1 of Section 4.1, it follows that

Structural Induction

We used mathematical induction to prove a result about a recursively defined set. Next, we study a more direct form induction for proving results about recursively defined sets.

Definition: To prove a property of the elements of a recursively defined set, we use structural induction.

BASIS STEP: Show that the result holds for all elements specified in the basis step of the recursive definition.

RECURSIVE STEP: Show that if the statement is true for each of the elements used to construct new elements in the recursive step of the definition, the result holds for these new elements.

- The validity of structural induction can be shown to follow from the principle of mathematical induction.
Full Binary Trees

Definition: The height $h(T)$ of a full binary tree T is defined recursively as follows:
- **BASIS STEP:** The height of a full binary tree T consisting of only a root r is 0.
- **RECURSIVE STEP:** If T_1 and T_2 are full binary trees, then the full binary tree $T = T_1 \cdot T_2$ has height $h(T) = h(T_1) + 1 + h(T_2)$.

The number of vertices $n(T)$ of a full binary tree T satisfies the following recursive formula:
- **BASIS STEP:** The number of vertices of a full binary tree T consisting of only a root r is 1.
- **RECURSIVE STEP:** If T_1 and T_2 are full binary trees, then the full binary tree $T = T_1 \cdot T_2$ has the number of vertices $n(T) = n(T_1) + n(T_2) + 1$.

Theorem: If T is a full binary tree, then $n(T) \leq 2^{h(T)+1} - 1$.

Proof: Use structural induction.
- **BASIS STEP:** The result holds for a full binary tree consisting of only a root, $n(T) = 1$ and $h(T) = 0$.
- **RECURSIVE STEP:** Assume $n(T_1) \leq 2^{h(T_1)+1} - 1$ and also $n(T_2) \leq 2^{h(T_2)+1} - 1$ whenever T_1 and T_2 are full binary trees.

$$n(T) = 1 + n(T_1) + n(T_2)$$ (by recursive formula of $n(T)$)

Generalized Induction

- **Generalized induction** is used to prove results about sets other than the integers that have the well-ordering property. (explored in more detail in Chapter 9)
- For example, consider an ordering on $\mathbb{N} \times \mathbb{N}$, ordered pairs of nonnegative integers. Specify that (x_1, y_1) is less than or equal to (x_2, y_2) if either $x_1 < x_2$, or $x_1 = x_2$ and $y_1 < y_2$. This is called the lexicographic ordering.
- Strings are also commonly ordered by a lexicographic ordering.