Announcements

- Reading this week Chap. 8.1-8.3, Chap10.1-10.4, 10.7-10.8, Chapter 11.1
 - Looks like a lot, but also a lot of review from CompSci 201, plus some new items
- Last Recitation on Friday (optional)
- Test back today

Recurrence Relations

- model lots of problems

 - The Tower of Hanoi
 - Divide and conquer algorithms
 - Sorting algorithm mergesort
 - Sorting algorithm quicksort
 - Tree algorithms
 - Searching for an element in a binary search tree
 - Listing out all elements in a binary search tree

Solving a recurrence relation

- Problem sets up as a recurrence
 - Must have a base case
- Solve the recurrence
 - Use substitution
- Prove correctness
 - Proof by induction
Example 1

- \(a_n = a_{n-1} + c \)
- \(a_0 = 1 \)

- Solve recurrence
- Then prove true by induction
- What is this an example of?

Proof by induction

Basis: \(a_0 = 1 \)

\[
\begin{align*}
a_n &= a_{n-1} + c \\
&= [a_{n-2} + c] + c \quad \text{substitute } a_{n-1} = a_{n-2} + c \\
&= a_{n-2} + 2c \\
&= [a_{n-3} + c] + 2c \quad \text{substitute } a_{n-2} = a_{n-3} + c \\
&= a_{n-3} + 3c \\
& \vdots \\
&= a_{n-k} + kc \\
& \vdots \\
&= a_0 + nc = cn + 1
\end{align*}
\]

Assume: for all \(k < n \)

\[
\begin{align*}
a_n &= a_{n-1} + c \quad \text{Show true for } k=n \\
&= \\
&= \\
&=
\end{align*}
\]
Proof by induction

Basis: \(a_0 = 1 \)
\[a_n = c_n + 1 = c(0) + 1 = 1 \checkmark \]

Assume: \(a_k = ck + 1 \) for all \(k < n \)
\[a_n = a_{n-1} + c \quad \text{Show true for } k = n \]
\[= [c(n-1) + 1] + c \quad \text{by I. H.} \]
\[= cn - c + 1 + c \]
\[= cn + 1 \checkmark \]

Worst case binary search tree

Example 2

• \(a_n = 2a_{n-1} + c \)
• \(a_0 = 0 \)

• Solve recurrence
• Then prove true by induction
• What is this an example of?
Example 2

\[a_0 = 0 \]
\[a_n = 2a_{n-1} + c \quad \rightarrow \text{Means} \]
\[= k \quad a_{n-k} + c(2^{k-1} + \ldots + 2 + 1) \]
\[= 2^k a_{n-k} + c(2^k - 1) \quad \text{Substituting for sum} \]

\[\rightarrow \text{Means} \quad a_{n-1} = 2a_{n-2} + c \]
\[= 2 \quad [2a_{n-2} + c] + c \quad \text{Substituting for } a_{n-2} \]
\[= 2^2 \quad a_{n-2} + 2c + c \]
\[= 2^2 \quad [2 \cdot a_{n-3} + c] + 2c + c \quad \text{Substituting for } a_{n-3} \]
\[= 2^3 \quad a_{n-3} + 4c + 2c + c \]
\[\ldots \]

Note: this is exponential!
Proof by Induction

Basis: \(a_0 = 0 \)

Assume: \(a_k = \) for all \(k < n \)

\[
a_n = 2a_{n-1} + c
\]

\[
= c(2^n - 1)
\]

Proof by Induction

Basis: \(a_0 = 0 \)

\[
a_0 = c(2^0 - 1) = c(1 - 1) = 0
\]

Assume: \(a_k = c(2^k - 1) \) for all \(k < n \)

\[
a_n = 2a_{n-1} + c
\]

\[
= 2c(2^{n-1} - 1) + c \text{ by I.H.}
\]

\[
= c2^n - 2c + c = c(2^n - 1)
\]

Towers of Hanoi

• Figures
 – Figs 1-4
 • problem size n-1
 – Figs 4-5
 • Constant work
 – Figs 5-7
 • problem size n-1

Example 3

• \(a_n = 2a_{n/2} + c \)

• \(a_1 = c \)

• Solve recurrence
• Then prove true by induction
• What is this an example of?
Example 3

\[a_1 = c\]

\[a_n = 2 \cdot a_{n/2} + c\]

=

=

=

...

=

Let \(n = 2^k \)

Example 3

\[a_1 = c\]

\[a_n = 2 \cdot a_{n/2} + c\]

=

=

=

...

= \[2^k \cdot a_{n/2^k} + c(2^k - 1)\]

Example 3

= \[n \cdot a_1 + c(n - 1)\]

= \[n \cdot (c) + cn - c\]

= \[2cn - c\]

Example 3

\[a_n = 2cn - c\]
Prove by induction

Basis: \(a_1 = c \)
\[a_n = 2cn - c \]
\(a_1 = \)

 Assume: \(a_k = 2c^k - c \) for \(k < n \)
\[a_n = 2 \times a_{n/2} + c \]
=
=

Traversal in binary search tree
preorder, postorder, inorder

Example 4

- \(a_n = 2a_{n/2} + cn \)
- \(a_1 = c \)

- Solve recurrence
- Then prove true by induction
- What is this an example of?
Example 4

\[a_1 = c \]
\[a_n = 2a_{n/2} + cn \]
\[= \]
\[= \]
\[= \]
\[= \]
\[\ldots \]
\[= \]

Let \(n/2^k = 1 \) → \(k = \log_2 n \)

Example 4

\[a_1 = c \]
\[a_n = 2a_{n/2} + cn \]
\[= 2[2a_{n/4} + cn/2] + cn \]
\[= 2^2 a_{n/4} + 2cn \]
\[= 2^2 [2a_{n/8} + cn/4] + 2cn \]
\[= 2^3 a_{n/8} + 3cn \]
\[\ldots \]
\[= 2^k a_{n/2^k} + kcn \]

Example 4

- \(= n a_1 + (\log_2 n)cn \)
- \(= nc + cn\log_2 n \)
- \(= cn(1 + \log_2 n) \)
Proof by induction

Basis: $a_1 = c$

$a_1 = c$

Assume: $a_k = c(1 + \log_2 k)$ for all $k < n$

$a_n = 2 * a_{n/2} + cn$

$= 2 * [cn/2 + cn/2 \log_2 n/2] + cn$

$= cn + cn (\log_2 n + \log_2 \frac{1}{2}) + cn$

$= cn(2 + \log_2 n - 1) = cn(1 + \log_2 n)$

Proof by induction

Basis: $a_1 = c$

$a_1 = cn(1 + \log_2 n)$

$= c(1)(1 + \log_2 1)$ for $n=1$

$= c * (1 + 0) = c$ ✔

Assume: $a_k = ck + ck \log_2 k$ for all $k < n$

$a_n = 2 * a_{n/2} + cn$

$= 2 * [cn/2 + cn/2 \log_2 n/2] + cn$

$= cn + cn (\log_2 n + \log_2 \frac{1}{2}) + cn$

$= cn(2 + \log_2 n - 1) = cn(1 + \log_2 n)$ ✔

MergeSort

- $n \log n$

Definition

- A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$$

- Where c_i are real numbers and $c_k \neq 0$
8.2 - Theorem 1

Let c_1 and c_2 be real numbers. Suppose that $r^2 - c_1 r - c_2 = 0$ has two distinct roots r_1 and r_2. Then the sequence $\{a_n\}$ is a solution of the recurrence

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

for all n where α_1 and α_2 are constants.

Example

- What is the solution to the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2, a_1 = 7$?

$$a_n = \frac{a_{n-1} + 2a_{n-2}}{r^2 - c_1 r - c_2 = 0}$$

Note $c_1 = _ , c_2 = _-$

$$\rightarrow r_1 = , r_2 =$$

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

$$a_n = 2 = a_0 = \quad sub \ n = 0$$

$$7 = a_1 = \quad sub \ n = 1$$

$$\rightarrow \quad \alpha_1 = , \quad \alpha_2 =$$

$$a_n =$$

8.2 - Theorem 2

- Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that $r^2 - c_1 r - c_2 = 0$ has only one root r_0. A sequence $\{a_n\}$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$

if and only if

$$a_n =\alpha_1 r_0^n + \alpha_2 n r_0^n$$

for all n where α_1 and α_2 are constants.

Example

- What is the solution to the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2, a_1 = 7$?

$$a_n = \frac{a_{n-1} + 2a_{n-2}}{r^2 - c_1 r - c_2 = 0}$$

Note $c_1 = _ , c_2 = _-$

$$\rightarrow r_1 = , r_2 =$$

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

$$a_n = 2 = a_0 = \quad sub \ n = 0$$

$$7 = a_1 = \quad sub \ n = 1$$

$$\rightarrow \quad \alpha_1 = , \quad \alpha_2 =$$

$$a_n =$$
Many other theorems

- See theorems 2-6 in Chapter 8.2

Theorem 6

Suppose that \(\{a_n\} \) satisfies the linear nonhomogeneous recurrence relation

\[
a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n)
\]

where \(c_1, c_2, \ldots, c_k \) are real numbers, and

\[
F(n) = (b_t n^t + b_{t-1} n^{t-1} + \cdots + b_1 n + b_0) s^n,
\]

where \(b_0, b_1, \ldots, b_t \) and \(s \) are real numbers. When \(s \) is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form

\[
(p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n
\]

Theorem 6 (cont)

When \(s \) is a root of this characteristic equation and its multiplicity is \(m \), there is a particular solution of the form

\[
n^m (p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n
\]

Theorem 1 in 8.3

Theorem 1: Let \(f \) be an increasing function that satisfies the recurrence relation

\[
f(n) = af(n/b) + c
\]

whenever \(n \) is divisible by \(b \), where \(a \geq 1 \), \(b \) is an integer greater than 1, and \(c \) is a positive real number. Then

\[f(n) \text{ is } \begin{cases} O(n^{\log_a b}) & \text{if } a > 1 \\ O(\log n) & \text{if } a = 1. \end{cases}\]

Furthermore, when \(n = b^k \) and \(a \neq 1 \), where \(k \) is a positive integer,

\[
f(n) = C_1 n^{\log_a b} + C_2
\]

where \(C_1 = f(1) + c/(a-1) \) and \(C_2 = -c/(a-1) \).
Master Theorem in 8.3

Theorem 2. Master Theorem: Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + cn^d$$

whenever $n = b^k$, where k is a positive integer greater than 1, and c and d are real numbers with c positive and d nonnegative. Then

$$f(n) \begin{cases} O(n^d) & \text{if } a < b^d, \\ O(n^d \log n) & \text{if } a = b^d, \\ O(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$