1. Let A, B and C be sets. Show that

 (a) $(A - B) - C \subseteq A - C$

 (b) $(B - A) \cup (C - A) = (B \cup C) - A$

2. If A, B, C and D are sets, does it follow that $(A \otimes B) \otimes (C \otimes D) = (A \otimes C) \otimes (B \otimes D)$?

3. Let $\Sigma = \{0, 1\}$. For each of the following languages, give the state diagram for a DFA that recognizes it. You can build the DFA in JFLAP (www.jflap.org) and test it out.

 - $L_1 = \{w \mid w$ begins and ends with an even number of 1’s\}
 Examples in L_1: 110101111, 010, 0, 11, 11001101011, Examples not in L_1: 101, 1, 1101, 111010111, 01

 - L_2 is the language that consists of all strings w such that w ends in an odd number of 1’s and w contains an even number of 0’s.
 Examples in L_2: 1010111, 001, 1, Examples NOT in L_2: 01001, 0011

 - $\Sigma^*0\Sigma^*1\Sigma^*0\Sigma^*$ Examples in L: 010, 000110, 11011001. Examples not in L: 111, 011, 00011.

 - $L = \{w \mid w$ is a binary number divisible by 2, given least significant digit first\}$.
 Examples in L: 0, 01, 001, 010, 01011. Examples not in L: 1, 111, 101.