COMPSCI 330 Design and Analysis of Algorithms

Final Review
Materials for the finals

- Final problems can be related to everything, except for
 - The bipartite matching algorithm (just the algorithm, not the problem).
 - Proofs for linear programs to have integer solutions.
 - Machine learning algorithms.
Once again, remember 3 techniques

• Divide and conquer
• Dynamic Programming
• Greedy Algorithms

• Everything is still related to these.
Divide and conquer

• Use when you can partition problems into unrelated subproblems.
• Midterm: Recursion trees, master theorem etc.
• Final: Remember analysis for randomized quicksort and quick selection?
Dynamic Programming

• Very general technique, can be combined with anything

• Dynamic programming can be combined with graphs/amortized analysis/probabilities

• Will see an example later.
Greedy

• Proof is crucial --- you will lose many points if you just give a greedy algorithm, even if it’s correct.

• Greedy can also be combined with everything we talked about in the latter half.
Randomized algorithm

• Things to remember:

• Basic probabilities
• Conditioning and independence
• Law of total expectation/Analyzing expected running time.
Amortized analysis

- Definition

- Techniques
 - Aggregate
 - Accounting
 - Potential

- Amortized cost analysis for union find will not appear.
Linear Program

• Definition

• Primal and Dual

• How to use a LP to solve a problem?
Reductions

• Direction of reduction

• Basic problems: 3-SAT, INDEPENDENT SET, HAMILTONIAN PATH, TRIPARTITE MATCHING.
Sample Problems
Election prediction

• You are trying to predict the result of election based on available data. There are \(n \) states, state \(i \) has \(v_i \) votes, and there are \(m \) votes in total. Based on the current data, state \(i \) has probability \(p_i \) to vote for democratic party, and probability \(1-p_i \) to vote for republican party. Compute the exact probability of democratic party to win the election.
Making a Heap

• Given a complete binary tree with \(n \) vertices. Design an algorithm that makes this tree a heap.

• Your algorithm should be as fast as possible.
Traffic Routing

• Suppose there is a road network represented as a graph. Each edge has a capacity which shows the number of cars it can transport at a unit time (in both directions). There is now a basketball game, and there are a_i people from neighborhood i that wants to go to some parking lot. Each parking lot has capacity b_i. Assume driving is actually very fast as long as it’s not congested, compute the amount of time it takes to transport all these people.

• Write a linear program to solve this problem.
Quadratic Equations

• We can solve linear equations and linear inequalities (LP). However, suppose we are given m quadratic equations over n variables, and we would like to decide whether they have a solution.

• Based on the NP-completeness of 3-SAT, prove QUADRATIC EQUATION is also NP-complete.
Final Format

• 5 problems + 1 extra. 20 points each. 3 hours

• Difficulty is similar to midterm.

• Extra problem is very hard. Do not attempt until you are confident with your other answers. (and no partial credit is given for the extra problem.)