- **Cook-Levin Theorem**
- **Example of Reductions**

- **Cook-Levin Theorem**: For any problem \(L \) in NP, there is a polynomial time reduction from \(L \) to \(\text{CIRCUIT-SAT} \) (SAT, 3-SAT).

- **CIRCUIT-SAT** (circuit satisfiability)
 - Boolean circuits
 - 3 basic operations: \(\wedge \) and \(\lor \) or \(\neg \) not

- Circuit: Directed acyclic graph whose nodes are "gates"

 - **CIRCUIT-SAT**: Given a circuit as the input, decide if there is a set of assignments to the input variables that makes the circuit output 1.

 - **CIRCUIT-SAT \(\in \) NP**
 - Easy. The "proof" is just one satisfying assignment, verifier will evaluate the circuit and output 1 if the circuit outputs 1.

 - **Proof idea of Cook-Levin Theorem**:
 - If \(L \) is an NP problem, then there is a poly-time verifier \(V \)
- If the verifier V is actually implemented by a boolean circuit:

 ![Circuit Diagram]

 (instance of L) (proof C)

- For any instance $x \in L$, fix the input for x, try to see if the circuit is still satisfiable.

 If circuit is sat. \implies answer to x is yes
 Circuit is not sat. \implies answer to x is no.

- Reduction from L to CIRCUIT-SAT.

- Claim: All polynomial-time algorithm can be implemented by a circuit of polynomial size.

- Reductions

 - To prove L is NP-hard, only need to reduce CIRCUIT-SAT to L.
 $$L \supseteq \text{CIRCUIT-SAT} \supseteq \text{any NP problem}$$

 - Common starting point: 3-SAT problem

 - A 3-SAT instance has m clauses, each clause is an or of (at most) 3 literals. A literal is a variable or its negation.

 $$X_1 \lor X_2 \lor X_3$$

 $$\rightarrow$$

 Clause

 Literals

 $$\rightarrow$$

 Clause is satisfied if $X_1 = 1$ or $X_2 = 1$ or $X_3 = 1$.

 - Answer to 3-SAT is yes if all m clauses can be satisfied simultaneously.

 (Another way to write is $C_1 \land C_2 \land \ldots \land C_m$ is satisfiable)

 \uparrow

 First clause

 \uparrow

 Last clause
3-SAT \rightarrow CIRCUIT-SAT easy

this reduction does not show 3-SAT is NP-hard.

CIRCUIT-SAT \geq 3-SAT

in order to show 3-SAT is NP-hard, need

CIRCUIT-SAT \rightarrow 3-SAT

3-SAT \geq CIRCUIT-SAT \geq \text{any NP problem}

- Example: INDEPENDENT-SET is NP-complete.

- IND-SET: Given a graph G (undirected), S \subseteq V is an independent set if no two vertices in S are connected by an edge.

| \includegraphics[width=0.5\textwidth]{independent_set_diagram.png} |

IND-SET: \((G, k)\) Decide whether \(G\) has an ind-set of size \(\geq k \).

- Reduction: 3-SAT \rightarrow IND-SET

- Idea: Use "gadgets"

 for each object in 3-SAT \rightarrow \text{map to some group of objects in IND-SET}

 literals \((x_i, \overline{x}_i)\) \text{ vertices}

 clauses \((C_1, C_2, \ldots)\) \text{ edges.}

 - Literals: For each literal in each clause \rightarrow \text{map to a vertex}

 \[x_1 \lor \overline{x_3} \lor \overline{x}_5 \rightarrow \bigcirc \quad \bigcirc\]

 in solution, one of these three is satisfied.

 \[\text{the satisfied literal will be in ind-set}\]

 \[\text{edges: } u, v \text{ are connected } \iff \text{ cannot choose both } u, v, \]

 \[\text{connect all vertices labeled } x_i \text{ to all vertices labeled } \overline{x}_i.\]
- Connect all literals within the same clause.

(want each clause to contribute 1 vertex to \(\text{IND-SET} \))

\[(x_1, \overline{x_2}, x_3) \land (x_2, \overline{x_3}, x_4) \land (x_3, \overline{x_2}, x_4)\]

Claim: The 3-SAT instance is satisfiable iff the graph has an \(\text{ind-} \) set of size \(m \).