Due Date: March 5, 2013

Problem 1: We wish to perform the following two operations on a set X of real numbers:

- **INSERT(x)**: first delete from X all numbers not larger than x and then insert x into X.
- **FIND-MIN**: return the smallest element of X.

Describe a data structure that supports each of these operations in $O(1)$ amortized time. (Hint: Consider using a stack)

Problem 2: Given a binary search tree, add to each node v an extra attribute $v.size$ indicating the number of keys stored in the subtree rooted at v. Let $\ell(v), r(v)$ denote the left and right child of v, respectively, and let α be a constant such that $1/2 \leq \alpha < 1$. A node v is α-balanced if $\ell(v).size \leq \alpha \cdot v.size$ and $r(v).size \leq \alpha \cdot v.size$. The binary search tree is α-balanced if every node in the tree is α-balanced.

In the following, assume that the constant α satisfies $1/2 < \alpha < 1$. Suppose that INSERT is implemented as usual for an n-node binary search tree, except that after every insertion, if any node in the tree is no longer α-balanced, then we “rebuild” the subtree rooted at the highest such node in the tree so that it becomes 1/2-balanced. (Note: in this way, at most one “rebuild” is performed at each insertion or deletion.)

We use the potential method to analyze the above rebuilding scheme. For a node v in a binary search tree T, define $\Delta(v) = |\ell(v).size - r(v).size|$, and define the potential of T as

$$\Phi(T) = c \sum_{v \in T : \Delta(v) \geq 2} \Delta(v),$$

where c is a sufficiently large constant that depends on α.

1. Argue that any binary search tree has nonnegative potential and a 1/2-balanced tree has potential 0.
2. Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in terms of α in order for it to take $O(1)$ amortized time to rebuild a subtree that is not α-balanced?
3. Show that inserting an item into an n-node α-balanced tree costs $O(\log n)$ amortized time. (Hint: Refer to [Er:15] for a different analysis of this algorithm.)

Problem 3: Any skip list L can be transformed into a binary search tree $T(L)$ as follows. The root of $T(L)$ is the leftmost node on the highest non-empty level of L; the left and right subtrees are constructed recursively from the nodes to the left and to the right of the root. Let’s call the resulting tree $T(L)$ a skip list tree.
(1) Show that any search in $T(L)$ is no more expensive than the corresponding search in L.

(2) Describe an algorithm to insert a new search key into the skip list tree in $O(\log n)$ expected time. Inserting key x into $T(L)$ should produce exactly the same tree as inserting x into L and then transforming L into a tree. (**Hint:** You will need to maintain some additional information in the tree nodes.)

Problem 4: Given a set of variables $\{x_1, x_2, \ldots, x_n\}$, an **equality** constraint is of the form “$x_i = x_j$” and an **disequality** constraint is of the form “$x_i \neq x_j$”. Describe an efficient algorithm that takes as input m constraints (some equality and some disequality) over n variables and decides whether all the constraints can be satisfied. For instance, the constraints

$$x_1 = x_2, x_2 = x_3, x_3 = x_4, x_1 \neq x_4$$

cannot be satisfied.

Problem 5: Let $\{x_1, x_2, \ldots, x_n\}$ be a set of real numbers on the real line, describe an efficient algorithm that decides the smallest set of unit-length closed intervals such that each x_i is in at least one of those intervals. Show the correctness of your algorithm (that is, the set of intervals output by your algorithm is indeed smallest possible) and analyze the running time.