Assignment 3
Course: COMPSCI 590

Due Date: March 5, 2013

Problem 1: We wish to perform the following two operations on a set \(X \) of real numbers:

- **INSERT** \((x)\): first delete from \(X \) all numbers not larger than \(x \) and then insert \(x \) into \(X \).
- **FIND-MIN**: return the smallest element of \(X \)

Describe a data structure that supports each of these operations in \(O(1) \) amortized time. *(Hint: Consider using a stack.)*

Problem 2: Given a binary search tree, add to each node \(v \) an extra attribute \(v\.size \) indicating the number of keys stored in the subtree rooted at \(v \). Let \(\ell(v) \), \(r(v) \) denote the left and right child of \(v \), respectively, and let \(\alpha \) be a constant such that \(1/2 \leq \alpha < 1 \). A node \(v \) is \(\alpha \)-balanced if \(\ell(v).size \leq \alpha \cdot v.size \) and \(r(v).size \leq \alpha \cdot v.size \). The binary search tree is \(\alpha \)-balanced if every node in the tree is \(\alpha \)-balanced.

In the following, assume that the constant \(\alpha \) satisfies \(1/2 < \alpha < 1 \). Suppose that **INSERT** is implemented as usual for an \(n \)-node binary search tree, except that after every insertion, if any node in the tree is no longer \(\alpha \)-balanced, then we “rebuild” the subtree rooted at the highest such node in the tree so that it becomes 1/2-balanced. (Note: in this way, at most one “rebuild” is performed at each insertion or deletion)

We use the potential method to analyze the above rebuilding scheme. For a node \(v \) in a binary search tree \(T \), define \(\Delta(v) = |\ell(v).size - r(v).size| \), and define the potential of \(T \) as

\[
\Phi(T) = c \sum_{v \in T : \Delta(v) \geq 2} \Delta(v),
\]

where \(c \) is a sufficiently large constant that depends on \(\alpha \).

1. Argue that any binary search tree has nonnegative potential and a 1/2-balanced tree has potential 0.
2. Suppose that \(m \) units of potential can pay for rebuilding an \(m \)-node subtree. How large must \(c \) be in terms of \(\alpha \) in order for it to take \(O(1) \) amortized time to rebuild a subtree that is not \(\alpha \)-balanced?
3. Show that inserting an item into an \(n \)-node \(\alpha \)-balanced tree costs \(O(\log n) \) amortized time. *(Hint: Refer to [Er:15] for a different analysis of this algorithm.)*

Problem 3: Any skip list \(\mathcal{L} \) can be transformed into a binary search tree \(T(\mathcal{L}) \) as follows. The root of \(T(\mathcal{L}) \) is the leftmost node on the highest non-empty level of \(\mathcal{L} \); the left and right subtrees are constructed recursively from the nodes to the left and to the right of the root. Let’s call the resulting tree \(T(\mathcal{L}) \) a skip list tree.
(1) Show that any search in $T(\mathcal{L})$ is no more expensive than the corresponding search in \mathcal{L}.

(2) Describe an algorithm to insert a new search key into the skip list tree in $O(\log n)$ expected time. Inserting key x into $T(\mathcal{L})$ should produce exactly the same tree as inserting x into \mathcal{L} and then transforming \mathcal{L} into a tree. (Hint: You will need to maintain some additional information in the tree nodes.)

Problem 4: In past lectures, we have seen disjoint-set data structures for maintaining a collection of disjoint sets which support the following two operations:

- $\text{UNION}(x, y)$: merges the sets that contain x and y into a new set that is the union of these two sets.
- $\text{FIND-SET}(x)$: returns a pointer to the representative of the (unique) set containing x.

Now suppose it is known that all union operations will be performed before all find-set operations. Describe an implementation of a disjoint-set data structure such that each of the UNION and FIND-SET operations takes $O(1)$ amortized time.

Problem 5: Let X be a set of n intervals on the real line. We say that a set P of points stabs X if every interval in X contains at least one point in P. Describe and analyze an efficient algorithm to compute the smallest set of points that stabs X. Assume that your input consists of two arrays $X_L[1..n]$ and $X_R[1..n]$, representing the left and right endpoints of the intervals in X.