Better I/O Through Byte-Addressable, Persistent Memory

Jeremy Condit, Ed Nightingale, Chris Frost, Engin Ipek, Ben Lee, Doug Burger, Derrick Coetzee
A New World of Storage

DRAM
- + Fast
- + Byte-addressable
- - Volatile

Disk / Flash
- + Non-volatile
- - Slow
- - Block-addressable
A New World of Storage

Byte-addressable, Persistent RAM

- Fast
- Byte-addressable
- Non-volatile
A New World of Storage

BPRAM

- Fast
- Byte-addressable
- Non-volatile

How do we build fast, reliable systems with BPRAM?
Phase Change Memory

- Most promising form of BPRAM

- “Melting memory chips in mass production”
 – Nature, 9/25/09
Phase Change Memory

phase change material (chalcogenide)

electrode

Properties
Reads: 2-4x DRAM
Writes: 5-10x DRAM
Endurance: 10^8+
A New World of Storage

Byte-addressable, Persistent RAM

BPRAM + Fast + Byte-addressable + Non-volatile

How do we build fast, reliable systems with BPRAM?

This talk: BPFS, a file system for BPRAM

Result: Improved performance and reliability
Goal
New guarantees for applications
 • File system operations will commit **atomically** and **in program order**
 • Your data is **durable** as soon as the cache is flushed

New mechanism: **short-circuit shadow paging**
Design Principles

1. Eliminate the **DRAM buffer cache**; use the **L1/L2 cache** instead

2. Put BPRAM on the **memory bus**

3. Provide **atomicity** and **ordering** in hardware
Outline

• Intro
• **File System**
• Hardware Support
• Evaluation
• Conclusion
BPRAM in the PC

L1

L2

--------------- Memory bus

DRAM

--------------- PCI/IDE bus

HD / Flash
BPRAM in the PC

- BPRAM and DRAM are addressable by the CPU
- Physical address space is partitioned
- BPRAM data may be cached in L1/L2
BPRAM in the PC

- BPRAM and DRAM are addressable by the CPU
- Physical address space is partitioned
- BPRAM data may be cached in L1/L2
BPFS: A BPRAM File System

- Guarantees that all file operations execute atomically and in program order

- Despite guarantees, significant performance improvements over NTFS on the same media

- Short-circuit shadow paging often allows atomic, in-place updates
BPFS: A BPRAM File System

- root pointer
- indirect blocks
- inodes
- file
- directory
- file
- inode file
BPFS: A BPRAM File System
Enforcing FS Consistency Guarantees

• What happens if we crash during an update?
Enforcing FS Consistency Guarantees

• What happens if we crash during an update?
Enforcing FS Consistency Guarantees

• What happens if we crash during an update?
Enforcing FS Consistency Guarantees

- What happens if we crash during an update?

- Disk: Use journaling or shadow paging
- BPRAM: Use short-circuit shadow paging
Review 1: Journaling

• Write to journal, then write to file system
Review 1: Journaling

• Write to journal, **then** write to file system
Review 1: Journaling

• Write to journal, then write to file system
Review 1: Journaling

• Write to journal, then write to file system

• Reliable, but all data is written twice
Review 2: Shadow Paging

- Use copy-on-write up to root of file system

![Diagram showing file’s root pointer and subdirectories A and B]
Review 2: Shadow Paging

- Use copy-on-write up to root of file system
Review 2: Shadow Paging

• Use copy-on-write up to root of file system
Review 2: Shadow Paging

• Use copy-on-write up to root of file system
Review 2: Shadow Paging

• Use copy-on-write up to root of file system
Review 2: Shadow Paging

- Use copy-on-write up to root of file system

Any change requires bubbling to the FS root
- Small writes require large copying overhead
Short-Circuit Shadow Paging

• Inspired by shadow paging
 – Optimization: In-place update when possible

• Uses byte-addressability and atomic 64b writes
Short-Circuit Shadow Paging

• Inspired by shadow paging
 – Optimization: In-place update when possible

file’s root pointer

• Uses byte-addressability and atomic 64b writes
Short-Circuit Shadow Paging

• Inspired by shadow paging
 – Optimization: In-place update when possible

• Uses byte-addressability and atomic 64b writes
Short-Circuit Shadow Paging

• Inspired by shadow paging
 – Optimization: In-place update when possible

• Uses byte-addressability and atomic 64b writes
Opt. 1: In-Place Writes

- Aligned 64-bit writes are performed in place
 - Data and metadata
Opt. 1: In-Place Writes

- Aligned 64-bit writes are performed in place
 - Data and metadata

file’s root pointer

in-place write
Opt. 1: In-Place Writes

- Aligned 64-bit writes are performed in place
 - Data and metadata

![Diagram of file's root pointer and subsequent pointers]

(file’s root pointer)
Opt. 1: In-Place Writes

- Aligned 64-bit writes are performed in place
 - Data and metadata
Opt. 1: In-Place Writes

- Aligned 64-bit writes are performed in place
 - Data and metadata

![Diagram showing file's root pointer and tree structure](image-url)
Opt. 2: Exploit Data-Metadata Invariants

- Appends committed by updating file size

```
file’s root pointer + size
```

Diagram:

- A root node represents the file’s root pointer and size.
 - Several child nodes indicate the structure of the metadata.
 - A dashed box highlights the section of the diagram.
Opt. 2: Exploit Data-Metadata

- Appends committed by updating file size

file’s root pointer + size

in-place append
Opt. 2: Exploit Data-Metadata Invariants

- Appends committed by updating file size
BPFS Example

- Root pointer
- Indirect blocks
- Inodes
- Inode file
- Directory
- Directory
- File
BPFS Example

- Cross-directory rename bubbles to common ancestor
BPFS Example

- **root pointer**
- **indirect blocks**
- **inode file**

Directories:
- directory
- directory

Files:
- file

Nodes:
- inodes

Blocks:
- root pointer block
- indirect block
- file block
Outline

- Intro
- File System
- **Hardware Support**
- Evaluation
- Conclusion
Problem 1: Ordering

... CoW Commit ...
Problem 1: Ordering

... CoW Commit ...

L1 / L2

BPRAM
Problem 1: Ordering

CoW
Commit

L1 / L2

BPRAM
Problem 1: Ordering

... CoW Commit ...

L1 / L2

BPRAM
Problem 1: Ordering

A problem has been detected and Windows has been shut down to prevent damage to your computer.

DRIVER_IRQL_NOT_LESS_OR_EQUAL

If this is the first time you've seen this stop error screen, restart your computer. If this screen appears again, follow these steps:

Check to make sure any new hardware or software is properly installed. If this is a new installation, ask your hardware or software manufacturer for any Windows updates you might need.
Problem 2: Atomicity

CoW Commit

L1 / L2

BPRAM
Problem 2: Atomicity

... CoW Commit ...

L1 / L2

BPRAM
Problem 2: Atomicity

CoW Commit

L1 / L2

BPRAM
Problem 2: Atomicity

CoW
Commit

L1 / L2

BPRAM
Enforcing Ordering and Atomicity

• Ordering
 – Solution: Epoch barriers to declare constraints
 – Faster than write-through
 – Important hardware primitive (cf. SCSI TCQ)

• Atomicity
 – Solution: Capacitor on DIMM
 – Simple and cheap!
Ordering and Atomicity

... CoW Barrier Commit ...

L1 / L2

BPRAM
Ordering and Atomicity

... CoW Barrier Commit ...

L1 / L2

BPRAM
Ordering and Atomicity

CoW
Barrier
Commit

L1 / L2

BPRAM
Ordering and Atomicity

CoW
Barrier
Commit

...
Ordering and Atomicity

... CoW Barrier Commit ...

Ineligible for eviction!

L1 / L2

BPRAM
Ordering and Atomicity

... CoW Barrier Commit ...

Ineligible for eviction!

L1 / L2

BPRAM
Ordering and Atomicity

CoW
Barrier
Commit

L1 / L2

BPRAM
Ordering and Atomicity

... CoW
Barrier
Commit ...

L1 / L2

BPRAM
Ordering and Atomicity

... CoW Barrier Commit ...

MP works too (see paper)
Outline

• Intro
• File System
• Hardware Support
• Evaluation
• Conclusion
Methodology

• **Built and evaluated** BPFS in Windows

• Three parts:
 – *Experimental*: BPFS vs. NTFS on DRAM
 – *Simulation*: Epoch barrier evaluation
 – *Analytical*: BPFS on PCM
Microbenchmarks

Append n Bytes

Time (s)

NOT DURABLE!

DURABLE!

Random n Byte Write

NOT DURABLE!

DURABLE!

- NTFS - Disk
- NTFS - RAM
- BPFS - RAM
BPFS Throughput On PCM

The diagram compares the execution time of different file systems and storage types. The x-axis represents the file system or storage type, and the y-axis shows the execution time relative to NTFS/Disk. The file systems and storage types compared are NTFS Disk, NTFS RAM, BPFS RAM, and BPFS PCM (Projected). The data indicates that BPFS PCM has a lower execution time compared to the other options.
BPFS Throughput On PCM

![Graph showing execution time and sustained throughput comparison between NTFS, Disk, and BPFS on PCM.]
Conclusions

• BPRAM changes the trade-offs for storage
 – Use consistency technique designed for medium
• Short-circuit shadow paging:
 – improves performance
 – improves reliability

Bonus: PCM chips on display at poster session!