Understanding Monotonicity of the Bellman Operator and the Implications Thereof

Ron Parr
CPS 570

The Bellman Operator

\[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^i(s') \]

- Let’s simplify things call this \(T \)
- \(V^{i+1} = TV^i \)
- We say \(V \) is **pessimistic** if \(V^{i+1} \geq TV^i \)
- Call \(k \) applications of \(T = T^k \)

Observations about Pessimistic \(V \)

- Suppose \(V \) is pessimistic
 - \(T^k V \) is also pessimistic for all \(k \)
 - \(T^{k+1} V \geq T^k V \) for all \(k \)
- Why (sketch): Consider state \(s \), if the states reachable by \(s \) have increased in value at iteration \(i \), then state \(s \) cannot decrease in value at iteration \(i+1 \)

Bellman Operator for a Specific Policy

\[V^{i+1}_\pi(s) = R(s,\pi(s)) + \gamma \sum_{s'} P(s'|s,\pi(s)) V^i_\pi(s') \]

- Call this \(T_\pi \)
- This is also monotonic under the same assumptions as for \(T \)
Modified Policy Iteration

- Guess V^0
- $\pi^0 = \text{greedy}(V^0)$
- $i=1$
- $V^i = T^i V^{i-1}$
- $i=i+1$
- $\pi^i = \text{greedy}(V^{i-1})$
- For $k=\infty$, MPI = PI (Policy Iteration)
- For $k=1$, MPI = VI (Value Iteration)

Implications of This

- MPI is monotone once V^i is pessimistic
- Implies that PI is monotone in general

- Why?
 - V_π (the true value function for any policy) will be pessimistic
 - For PI ($k=\infty$), V^1 will be pessimistic