COMPSCI 110
Operating Systems

• Who - Introductions
• How - Policies and Administrative Details
• Why - Objectives and Expectations
• What - Our Topic: Operating Systems

How COMPSCI 110 will work

• It’s all explained on the web
 http://www.cs.duke.edu/education/courses/cps110/fall00/
 Don’t expect handouts regularly
• New feature: smaller classes on Thursdays
 – 2/3 of class will meet here
 – 1/3 will meet in D243
 (2nd floor COMPSCI conference room)
 – Same material will be covered in each place.

How COMPSCI 110 will work

• Immediate ToDo’s:
 – Form project groups - email me
 • carla@cs.duke.edu subject: 110 groups
 – Begin reading textbook:
 • Today’s lecture - Chapters 1-3
 • Next lecture, Review of CPS 104 : Chapters 4, 5
 • Next big topic, Process Mgt and Concurrency:
 Chapters 6 - 10.
 – Fill out and leave “Who’s who” questionnaire
 – Take pictures of each other

Objectives/Expectations

• What we want to accomplish today.
• What I want you to learn in this class ...
• What you can expect from me.
• What I expect from you.

What you will learn

• What an OS does. What services are provided, what functions are performed, what resources are managed, and what interfaces and abstractions are supported.
• How the OS is implemented. How the code is structured. What algorithms are used.
• Techniques, skills, and "systems intuition" (e.g., concurrent programming).
• Peaks at current research topics.

What is an OS?
What is an OS?

- **Resource Manager** of physical (HW) devices...
- **Abstract machine** environment. The OS defines a set of logical resources (objects) and operations on those objects (an interface on the use of those objects).
- Allows *sharing* of resources. Controls interactions among different users.
- Privileged, protected software - the *kernel*. Different kind relationship between OS and user code (entry via system calls, interrupts).

HW Resources to be Managed

- CPU (computation cycles)
- Primary memory
- Secondary memory devices (disk, tapes)
- Networks
- Input devices (keyboard, mouse, camera)
- Output devices (printers, display, speakers)

Working simultaneously. Shared among tasks. **Concurrent demands from all directions.**

Examples of Abstractions

- Threads or Processes (Fork)
- Address spaces (Allocate)
- Files (Open, Close, Read, Write)
- Messages (Send, Receive)

Main Issues in OS

- Structure
- Concurrency and Synchronization
- Extensibility, Compatibility
- Communication
- Sharing
- Naming
- Performance

- Protection, Access control, Security
- Reliability, Fault Tolerance
- Persistence, Longevity
- Scalability, Distribution
- Accounting - $\$