COMPSCI 110
Operating Systems

• Who - Introductions
• How - Policies and Administrative Details
• Why - Objectives and Expectations
• What - Our Topic: Operating Systems

How COMPSCI 110 will work

• It’s all explained on the web
 http://www.cs.duke.edu/education/courses/fall01/cps110/
 Don’t expect handouts regularly
• New feature: Discussion sections
 – Goals: provide opportunity for interaction, questions answered, exploration of details that can’t be covered in lecture, problem-solving experiences.
 – Initially, based on problems assigned from textbook

How COMPSCI 110 will work

• Immediate ToDo’s:
 – Form project groups - email me
 • carla@cs.duke.edu subject: 110 groups
 – Begin reading textbook:
 • Today’s lecture - Chapters 1
 • Next lecture - Review of CPS 104
 • Next big topic, Process Mgt and Concurrency - Chapter 2
 – Fill out and leave “Who’s who” questionnaire
 – Take pictures of each other
 • Signup sheet, associating your picture with frame number on camera.
 • Tips for “good” photos.

Objectives/Expectations

• What we want to accomplish today.
• What I want you to learn in this class ...
• What you can expect from me.
• What I expect from you.
What you will learn
- What an OS does. What services are provided, what functions are performed, what resources are managed, and what interfaces and abstractions are supported.
- How the OS is implemented. How the code is structured. What algorithms are used.
- Techniques, skills, and "systems intuition" (e.g., concurrent programming).
- Peaks at current research topics.

What is an OS?
- Resource Manager of physical (HW) devices...
- Abstract machine environment. The OS defines a set of logical resources (objects) and operations on those objects (an interface on the use of those objects).
- Allows sharing of resources. Controls interactions among different users.
- Privileged, protected software - the kernel. Different kind relationship between OS and user code (entry via system calls, interrupts).

What is an OS?
- Birthplace of system design principles: e.g., Separation of Policy and Mechanism.
- Supporting role - to provide services for the target workload, not an end product itself.
- Not the command interpreter and not a library of utility functions that can be linked into user programs.
HW Resources to be Managed

• CPU (computation cycles)
• Primary memory
• Secondary memory devices (disk, tapes)
• Networks
• Input devices (keyboard, mouse, camera)
• Output devices (printers, display, speakers)

Working simultaneously. Shared among tasks. Limited - concurrent demands from all directions.

HW Resources to be Managed

• CPU (computation cycles)
• Primary memory
• Secondary memory devices (disk, tapes)
• Networks - bandwidth for web transactions
• Input devices (keyboard, mouse, camera)
• Output devices (printers, display, speakers)
• Energy / battery life (for mobile devices)

Examples of Abstractions

• Threads or Processes (Fork)
• Address spaces (Allocate)
• Files (Open, Close, Read, Write)
• Messages (Send, Receive)

Main Issues in OS

• Structure
• Concurrency and Synchronization
• Extensibility, Compatibility
• Communication
• Sharing
• Naming
• Performance

• Protection, Access control, Security
• Reliability, Fault Tolerance
• Persistence, Longevity
• Scalability, Distribution
• Accounting - $$