COMPSCI 110
Operating Systems

• Who - Introductions
• How - Policies and Administrative Details
• Why - Objectives and Expectations
• What - Our Topic: Operating Systems

How COMPSCI 110 will work

• It’s all explained on the web
 http://www.cs.duke.edu/education/courses/spring02/cps110/
 Don’t expect handouts regularly
• Discussion sections
 – Goals: provide opportunity for interaction, questions answered, exploration of details that can’t be covered in lecture, problem-solving experiences.
 – Based on problems assigned from textbook
 – Bring your Nachos questions there
How COMPSCI 110 will work

- Immediate ToDo’s:
 - Form project groups - email me
 - carla@cs.duke.edu subject: 110 groups
 - Info needed:
 - name for group,
 - desired password,
 - names and emails for each member of group
 - Begin reading textbook:
 - Chapter 1
 - Next lecture - Review of CPS 104
 - First big topic, Process Mgt and Concurrency - Chapter 2
 - Fill out and leave “Who’s who” questionnaire
 - Take pictures of each other
 - Signup sheet, associating your picture with sequential number on signup sheet (not “frame” number on camera)
 - Tips for “good” photos – not too close, zoom in to fill viewfinder

Objectives/Expectations

- What we want to accomplish today.
- What I want you to learn in this class ...
- What you can expect from me.
- What I expect from you.
What you will learn

- What an OS does. What services are provided, what functions are performed, what resources are managed, and what interfaces and abstractions are supported.
- How the OS is implemented. How the code is structured. What algorithms are used.
- Techniques, skills, and "systems intuition" (e.g., concurrent programming).
- Peaks at current research topics.

What is an OS?
What is an OS?

- **Resource Manager** of physical (HW) devices ...
- **Abstract machine** environment. The OS defines a set of logical resources (objects) and operations on those objects (an interface on the use of those objects).
- Allows *sharing* of resources. Controls interactions among different users.
- Privileged, protected software - the *kernel*. Different kind relationship between OS and user code (entry via system calls, interrupts).

What is an OS?

- Birthplace of system design principles: e.g., Separation of Policy and Mechanism.
- Supporting role - to provide services for the target workload, not an end product itself.
- Not the command interpreter and not a library of utility functions that can be linked into user programs.
HW Resources to be Managed

- CPU (computation cycles)
- Primary memory
- Secondary memory devices (disk, tapes)
- Networks
- Input devices (keyboard, mouse, camera)
- Output devices (printers, display, speakers)

Working simultaneously. Shared among tasks.
\|ism - concurrent demands from all directions.

- Networks - bandwidth for web transactions
- Energy / battery-life (for mobile devices)
Examples of Abstractions

- Threads or Processes (Fork)
- Address spaces (Allocate)
- Files (Open, Close, Read, Write)
- Messages (Send, Receive)

Main Issues in OS

- Structure
- Concurrency and Synchronization
- Extensibility, Compatibility
- Communication
- Sharing
- Naming
- Performance

- Protection, Access control, Security
- Reliability, Fault Tolerance
- Persistence, Longevity
- Scalability, Distribution
- Accounting - $$