Real Time Schedulers

• Real-time schedulers must support regular, periodic execution of tasks (e.g., continuous media).
 – CPU Reservations
 • “I need to execute for X out of every Y units.”
 • Scheduler exercises admission control at reservation time: application must handle failure of a reservation request.
 – Proportional Share
 • “I need $1/n$ of resources”
 – Time Constraints
 • “Run this before my deadline at time T.”

Assumptions

• Tasks are periodic with constant interval between requests, T_i (request rate $1/T_i$)
• Each task must be completed before the next request for it occurs
• Tasks are independent
• Run-time for each task is constant (max), C_i
• Any non-periodic tasks are special
Task Model

\[C_1 = 1 \]
\[C_2 = 1 \]

Definitions

- **Deadline** is time of next request
- **Overflow** at time \(t \) if \(t \) is deadline of unfulfilled request
- **Feasible** schedule - for a given set of tasks, a scheduling algorithm produces a schedule so no overflow ever occurs.
- **Critical instant** for a task - time at which a request will have largest response time.
 - Occurs when task is requested simultaneously with all tasks of higher priority
Rate Monotonic

- Assign priorities to tasks according to their request rates, independent of run times
- Optimal in the sense that no other fixed priority assignment rule can schedule a task set which cannot be scheduled by rate monotonic.
- If feasible (fixed) priority assignment exists for some task set, rate monotonic is feasible for that task set.

Earliest Deadline First

- Dynamic algorithm
- Priorities are assigned to tasks according to the deadlines of their current request
- With EDF there is no idle time prior to an overflow
- For a given set of \(m \) tasks, EDF is feasible iff
 \[
 \frac{C_1}{T_1} + \frac{C_2}{T_2} + \ldots + \frac{C_m}{T_m} \leq 1
 \]
- If a set of tasks can be scheduled by any algorithm, it can be scheduled by EDF
Proportional Share

- Goals: to integrate real-time and non-real-time tasks, to police ill-behaved tasks, to give every process a well-defined share of the processor.
- Each client, i, gets a weight w_i
- Instantaneous share $f_i(t) = w_i/\sum_{j \in \Lambda(t)} w_j$

- Service time (f_i constant in interval)
 $S_i(t_0, t_1) = f_i(t) \Delta t$
- Set of active clients varies $\Rightarrow f_i$ varies over time
 $S_i(t_0, t_1) = \int_{t_0}^{t_1} f_i(\tau) \, d\tau$

Common Proportional Share Competitors

- Weighted Round Robin – RR with quantum times equal to share
 RR:
 WRR:

- Fair Share – adjustments to priorities to reflect share allocation (compatible with multilevel feedback algorithms)

Linux
Common Proportional Share Competitors

- Weighted Round Robin – RR with quantum times equal to share
 RR:
 WRR:

- Fair Share – adjustments to priorities to reflect share allocation (compatible with multilevel feedback algorithms)

Linux
Common Proportional Share Competitors

- **Fair Queuing**
 - Weighted Fair Queuing
 - Stride scheduling
 - VT – Virtual Time advances at a rate proportional to share
 \[VTA(t) = W_A(t) / S_A \]
 - VFT – Virtual Finishing Time: VT a client would have after executing its next time quantum
 - WFQ schedules by smallest VFT
 - \(E_A \) never below -1

<table>
<thead>
<tr>
<th>(VFT)</th>
<th>(2/3)</th>
<th>(2/2)</th>
<th>(1/1)</th>
</tr>
</thead>
</table>
| \(\text{Lottery Scheduling} \) | [Waldspurger96] | Elegant approach to periodic execution, priority, and proportional resource allocation.
 - Give \(W_p \) “lottery tickets” to each process \(p \).
 - \(\text{GetNextToRun} \) selects “winning ticket” randomly.
 - If \(SW_p = N \), then each process gets CPU share \(W_p/N \) ...
 ...probabilistically, and over a sufficiently long time interval.
 - **Flexible**: tickets are transferable to allow application-level adjustment of CPU shares.
 - Simple, clean, fast.
 - Random choices are often a simple and efficient way to produce the desired overall behavior (probabilistically).
Basic Idea

- Resource rights are represented by **lottery tickets**
 - Give W_p “lottery tickets” to each process p.
 - abstract, relative (vary dynamically wrt contention), uniform (handle heterogeneity)
 - responsiveness: adjusting relative # tickets gets immediately reflected in next lottery
- At allocation time: hold a **lottery**; Resource goes to the computation holding the winning ticket.
 - $GetNextToRun$ selects “winning ticket” randomly..

Fairness

- Expected allocation is proportional to # tickets held - actual allocation becomes closer over time.
- Number of lotteries won by client
 \[E[w] = n p \text{ where } p = t/T \]
- Response time (# lotteries to wait for first win)
 \[E[n] = 1/p \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td># wins</td>
</tr>
<tr>
<td>t</td>
<td># tickets</td>
</tr>
<tr>
<td>T</td>
<td>total # tickets</td>
</tr>
<tr>
<td>n</td>
<td># lotteries</td>
</tr>
</tbody>
</table>
Example List-based Lottery

$T = 20$

\[
\begin{array}{cccc}
10 & 2 & 5 & 1 & 2 \\
\end{array}
\]

Summing:

\[
\begin{array}{ccc}
10 & 12 & 17 \\
\end{array}
\]

Random(0, 19) = 15

Bells and Whistles

- **Ticket transfers** - objects that can be explicitly passed in messages
 - Can be used to solve priority inversions
- **Ticket inflation**
 - Create more - used among mutually trusting clients to dynamically adjust ticket allocations
- **Currencies** - “local” control, exchange rates
- **Compensation tickets** - to maintain share
 - use only f of quantum, ticket inflated by $1/f$ in next