Relational Database Design Theory
Part I

CPS 116
Introduction to Database Systems

Announcements

- Homework #1 due this Thursday (Sept. 9) at midnight
- Course project assigned today
 - First milestone due September 30
- Details of (optional) student presentations will be available this Thursday
- Let me know if you still do not have a Gradiance or DB2 account

Motivation

- How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R.
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>k</td>
<td>l</td>
</tr>
</tbody>
</table>

Must be b Could be anything

FD examples

Address ($street_address$, $city$, $state$, zip)

- Trivial FD: LHS \supseteq RHS
- Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD's

Given a relation R and a set of FD's \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD's in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD's \mathcal{F} that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes functionally determined by Z
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

$StudentGrade\ (SID, \ name, \ email, \ CID, \ grade)$

- $SID \rightarrow name, email$
- $email \rightarrow SID$
- $SID, CID \rightarrow grade$

- Not a good design, and we will see why later
Example of computing closure

- \(F \) includes:
 - \(SID \rightarrow \text{name, email} \)
 - \(\text{email} \rightarrow \text{SID} \)
 - \(\text{SID, CID} \rightarrow \text{grade} \)

- \(\{ \text{CID, email} \}^+ = ? \)
 - \(\text{email} \rightarrow \text{SID} \)
 - Add SID; closure is now \(\{ \text{CID, email, SID} \} \)
 - \(\text{SID} \rightarrow \text{name, email} \)
 - Add name, email; closure is now \(\{ \text{CID, email, SID, name} \} \)
 - \(\text{SID, CID} \rightarrow \text{grade} \)
 - Add grade; closure is now all the attributes in StudentGrade

Using attribute closure

Given a relation \(R \) and set of FD's \(F \)

- Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Compute \(X^+ \) with respect to \(F \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follow from \(F \)

- Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(F \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
Using rules of FD’s

Given a relation R and set of FD’s F:

- Does another FD $X \rightarrow Y$ follow from F?
 - Use the rules to come up with a proof
 - Example:
 - F includes:
 - $SID \rightarrow name, email, email \rightarrow SID, SID, CID \rightarrow grade$
 - $CID, email \rightarrow grade$?
 - $email \rightarrow SID$ (given in F)
 - $CID, email \rightarrow CID, SID$ (augmentation)
 - $SID, CID \rightarrow grade$ (given in F)
 - $CID, email \rightarrow grade$ (transitivity)

Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

\[
\begin{array}{|c|c|c|}
 \hline
 X & Y & Z \\
 \hline
 a & b & c_1 \\
 a & b & c_2 \\
 \vdots & \vdots & \vdots \\
 \hline
\end{array}
\]

That a is always associated with b is recorded by multiple rows: redundancy, update anomaly, deletion anomaly

Example of redundancy

- $StudentGrade (SID, name, email, CID, grade)$
 - $SID \rightarrow name, email$

\[
\begin{array}{|c|c|c|c|c|c|}
 \hline
 SID & name & email & CID & grade \\
 \hline
 124 & Bart & bart@fox.com & CPS114 & B- \\
 124 & Bart & bart@fox.com & CPS114 & B \\
 123 & Milhouse & milhouse@fox.com & CPS116 & B+ \\
 857 & Lisa & lisa@fox.com & CPS116 & A+ \\
 857 & Lisa & lisa@fox.com & CPS130 & A+ \\
 456 & Ralph & ralph@fox.com & CPS114 & C \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 \hline
\end{array}
\]
Decomposition

- Eliminates redundancy
- To get back to the original relation:

```
SID name email CID grade
142 Bart bart@fox.com 142 CPS116 B-
123 Milhouse milhouse@fox.com 142 CPS114 B
356 Ralph ralph@fox.com 123 CPS116 A+
142 CPS116 A-
```

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

```
SID name email
142 Bart bart@fox.com
123 Milhouse milhouse@fox.com
356 Ralph ralph@fox.com
```

Bad decomposition

```
SID CID grade
142 CPS116 B-
142 CPS114 B
123 CPS116 A+
142 CPS116 A-
356 CPS114 C
```
Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(S)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given constraints such as FD's, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

No way to tell which is the original relation

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from “key \rightarrow other attributes”

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

$\text{StudentGrade} (\text{SID, name, email, CID, grade})$
$\text{BCNF violation: } \text{SID} \rightarrow \text{name, email}$

$\text{Student} (\text{SID, name, email})$
$\text{Grade} (\text{SID, CID, grade})$
Another example

\[\text{StudentGrade (SID, name, email, CID, grade)} \]

BCNF violation: \(\text{email} \rightarrow \text{SID} \)

Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:

- Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Sure; and it doesn’t depend on the FD

- Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Proof makes use of the fact that \(X \rightarrow Y \)

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s