Relational Database Design Theory
Part I

CPS 116
Introduction to Database Systems

Announcements

- Homework #1 due this Thursday (Sept. 9) at midnight
- Course project assigned today
 - First milestone due September 30
- Details of (optional) student presentations will be available this Thursday
- Let me know if you still do not have a Gradiance or DB2 account

Motivation

- How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

FD examples

Address (street_address, city, state, zip)
- street_address, city, state \rightarrow zip
- zip \rightarrow city, state
- zip, state \rightarrow zip?
 - This is a trivial FD
 - Trivial FD: LHS \supset RHS
- zip \rightarrow state, zip?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}
- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes functionally determined by Z
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \to Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

$StudentGrade (SID, name, email, CID, grade)$
- $SID \to name, email$
- $email \to SID$
- $SID, CID \to grade$
- Not a good design, and we will see why later

Example of computing closure

- \mathcal{F} includes:
 - $SID \to name, email$
 - $email \to SID$
 - $SID, CID \to grade$
- $\{ CID, email \}^+ = ?$
 - $email \to SID$
 - Add SID; closure is now $\{ CID, email, SID \}$
 - $SID \to name, email$
 - Add $name, email$; closure is now $\{ CID, email, SID, name \}$
 - $SID, CID \to grade$
 - Add $grade$; closure is now all the attributes in $StudentGrade$

Using attribute closure

Given a relation R and set of FD’s \mathcal{F}
- Does another FD $X \to Y$ follow from \mathcal{F}?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \to Y$ follow from \mathcal{F}
- Is K a key of R?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \to Y$
 - Augmentation: If $X \to Y$, then $XZ \toYZ$ for any Z
 - Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Rules derived from axioms
 - Splitting: If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - Combining: If $X \to Y$ and $X \to Z$, then $X \to YZ$
Using rules of FD's

Given a relation R and set of FD's \mathcal{F}
- Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Use the rules to come up with a proof
 - Example:
 - \mathcal{F} includes:
 - $\text{SID} \rightarrow \text{name, email}$; $\text{email} \rightarrow \text{SID}$; $\text{SID, CID} \rightarrow \text{grade}$
 - $\text{email} \rightarrow \text{SID}$ (given in \mathcal{F})
 - $\text{CID, email} \rightarrow \text{CID}$, SID (augmentation)
 - $\text{SID, CID} \rightarrow \text{grade}$ (given in \mathcal{F})
 - $\text{CID, email} \rightarrow \text{grade}$ (transitivity)

Non-key FD's
- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

Example of redundancy
- StudentGrade ($\text{SID, name, email, CID, grade}$)
- $\text{SID} \rightarrow \text{name, email}$

Unnecessary decomposition
- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

Decomposition
- Eliminates redundancy
- To get back to the original relation: \triangleright

Bad decomposition
- Association between CID and grade is lost
- Join returns more rows than the original relation
Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(S)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given constraints such as FD's, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- StudentGrade (SID, name, email, CID, grade)
 - BCNF violation: SID \rightarrow name, email
- Student (SID, name, email)
- Grade (SID, CID, grade)
 - BCNF

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from “key \rightarrow other attributes”
- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it is guaranteed to be a lossless join decomposition!

Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
- Or, the ability to distinguish different original relations

No way to tell which is the original relation
Another example

StudentGrade (SID, name, email, CID, grade)
BCNF violation: email → SID

StudentID (email, SID)
BCNF

StudentGrade' (email, name, CID, grade)
BCNF violation: email → name

StudentName (email, name)
BCNF

Grade (email, CID, grade)
BCNF

Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:

- Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 Yes, and it doesn’t depend on the FD

- Anything that comes back in the join must be in the original relation:
 \[R \cong \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 Proof makes use of the fact that \(X \rightarrow Y \)

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s