Transactions

- A transaction is a sequence of database operations with the following properties (ACID):
 - Atomic: Operations of a transaction are executed all-or-nothing, and are never left “half-done”
 - Consistency: Assume all database constraints are satisfied at the start of a transaction, they should remain satisfied at the end of the transaction
 - Isolation: Transactions must behave as if they were executed in complete isolation from each other
 - Durability: If the DBMS crashes after a transaction commits, all effects of the transaction must remain in the database when DBMS comes back up

SQL transactions

- A transaction is automatically started when a user executes an SQL statement
- Subsequent statements in the same session are executed as part of this transaction
 - Statements see changes made by earlier ones in the same transaction
 - Statements in other concurrently running transactions do not see these changes
- COMMIT command commits the transaction
 - Its effects are made final and visible to subsequent transactions
- ROLLBACK command aborts the transaction
 - Its effects are undone

Fine prints

- Schema operations (e.g., CREATE TABLE) implicitly commit the current transaction
 - Because it is often difficult to undo a schema operation
- Sometimes you need to turn off a feature called AUTOCOMMIT, which automatically commits every single statement
 - Example: Run DB2’s db2 command-line processor with the option +C
 - More examples to come when we cover database API’s

Announcements

- Homework #2 due next Tuesday (Sept. 28)
- Project milestone #1 due next Thursday
- Discussion session this week (Homework #2 Q&A)
 - Time and place will be announced via email

Atomicity

- Partial effects of a transaction must be undone when
 - User explicitly aborts the transaction using ROLLBACK
 - E.g., application asks for user confirmation in the last step and issues COMMIT or ROLLBACK depending on the response
 - The DBMS crashes before a transaction commits
 - Partial effects of a modification statement must be undone when any constraint is violated
 - However, only this statement is rolled back; the transaction continues
 - How is atomicity achieved?
 - Logging (to support undo)
Durability

- Effects of committed transactions must survive DBMS crashes
- How is durability achieved?
 - Forcing all changes to disk at the end of every transaction:
 - Too expensive: DBMS manipulates data in memory
 - Logging (to support redo)

Consistency

- Consistency of the database is guaranteed by constraints and triggers declared in the database and/or transactions themselves
 - Whenever inconsistency arises, abort the statement or transaction, or (with deferred constraint checking or application-enforced constraints) fix the inconsistency within the transaction

Isolation

- Transactions must appear to be executed in a serial schedule (with no interleaving operations)
- For performance, DBMS executes transactions using a serializable schedule
 - In this schedule, operations from different transactions can interleave and execute concurrently
 - But the schedule is guaranteed to produce the same effects as a serial schedule
- How is isolation achieved?
 - Locking, multi-version concurrency control, etc.

SQL isolation levels

- Strongest isolation level: SERIALIZABLE
 - Complete isolation
 - SQL default
- Weaker isolation levels: REPEATABLE READ, READ COMMITTED, READ UNCOMMITTED
 - Increase performance by eliminating overhead and allowing higher degrees of concurrency
 - Trade-off: sometimes you get the “wrong” answer

READ UNCOMMITTED

- Can read “dirty” data
 - A data item is dirty if it is written by an uncommitted transaction
- Problem: What if the transaction that wrote the dirty data eventually aborts?
- Example: wrong average
 - -- T1: UPDATE Student
 SET GPA = 3.0
 WHERE SID = 142;
 ROLLBACK;
 - -- T2: SELECT AVG(GPA)
 FROM Student;

READ COMMITTED

- No dirty reads, but non-repeatable reads possible
 - Reading the same data item twice can produce different results
- Example: different averages
 - -- T1: UPDATE Student
 SET GPA = 3.0
 WHERE SID = 142;
 COMMIT;
 - -- T2: SELECT AVG(GPA)
 FROM Student;

REPEATABLE READ

- Reads are repeatable, but may see phantoms
- Example: different average (still!)

```sql
T1: -- T2: 
SELECT AVG(GPA) FROM Student;
```

```sql
INSERT INTO Student VALUES(789, 'Nelson', 10, 1.0);
COMMIT;
```

```sql
SELECT AVG(GPA) FROM Student;
COMMIT;
```

Summary of SQL isolation levels

<table>
<thead>
<tr>
<th>Isolation level/normal</th>
<th>Dirty reads</th>
<th>Non-repeatable reads</th>
<th>Phantoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ UNCOMMITTED</td>
<td>Possible</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>READ COMMITTED</td>
<td>Impossible</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>REPEATABLE READ</td>
<td>Impossible</td>
<td>Impossible</td>
<td>Possible</td>
</tr>
<tr>
<td>SERIALIZABLE</td>
<td>Impossible</td>
<td>Impossible</td>
<td>Impossible</td>
</tr>
</tbody>
</table>

- Syntax: At the beginning of a transaction, `SET TRANSACTION ISOLATION LEVEL isolation_level {READ ONLY|READ WRITE};`
- READ UNCOMMITTED can only be READ ONLY