SQL: Recursion

CPS 116
Introduction to Database Systems

Announcements

- Homework #2 due today at midnight (Sep. 28)
- Sample solution will be available on Thursday
- Project milestone #1 due on Thursday
- Midterm next Thursday

A motivating example

```
Parent (parent, child)

Ape    Homer
Homer  Lisa
Homer  Marge
Marge  Bart
Marge  Lisa
Abe    Homer
Abe    Ape
```

- Example: find Bart's ancestors
- "Ancestor" has a recursive definition
 - X is Y's ancestor if
 - X is Y's parent, or
 - X is Z's ancestor and Z is Y's ancestor

Recursion in SQL

- SQL2 had no recursion
- You can find Bart's parents, grandparents, great grandparents, etc.
  ```
  SELECT p1.parent AS grandparent
  FROM Parent p1, Parent p2
  WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
  ```
- But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
 - WITH clause
 - Implemented in DB2 (called common table expressions)

Ancestor query in SQL3

```
WITH Ancestor(anc, desc) AS
  (SELECT parent, child FROM Parent)
UNION
  (SELECT a1.anc, a2.desc
   FROM Ancestor a1, Ancestor a2
   WHERE a1.desc = a2.anc)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
```

Fixed point of a function

- If $f: T \rightarrow T$ is a function from a type T to itself, a fixed point of f is a value x such that $f(x) = x$
- Example: What is the fixed point of $f(x) = x / 2$?
 - 0, because $f(0) = 0 / 2 = 0$
- To compute a fixed point of f
 - Start with a "seed": $x \leftarrow x_0$
 - Compute $f(x)$
 - If $f(x) = x$, stop; x is fixed point of f
 - Otherwise, $x \leftarrow f(x)$; repeat
- Example: compute the fixed point of $f(x) = x / 2$
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... → 0
Fixed point of a query

- A query \(q \) is just a function that maps an input table to an output table, so a fixed point of \(q \) is a table \(T \) such that \(q(T) = T \).

- To compute fixed point of \(q \):
 - Start with an empty table: \(T \leftarrow \emptyset \).
 - Evaluate \(q \) over \(T \).
 - If the result is identical to \(T \), stop; \(T \) is a fixed point.
 - Otherwise, let \(T \) be the new result; repeat.

Starting from \(\emptyset \) produces the unique minimal fixed point (assuming \(q \) is monotone).

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships.
- In the first step, we deduce that parents and children form ancestor-descendent relationships.
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships.
- We stop when no new facts can be proven.

Linear vs. non-linear recursion

- Linear recursion is easier to implement.
 - For linear recursion, just keep joining newly generated \(Ancestor \) rows with \(Parent \).
 - For non-linear recursion, need to join newly generated \(Ancestor \) rows with all existing \(Ancestor \) rows.

- Non-linear recursion may take fewer steps to converge:
 - Example: \(a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \)
 - Linear recursion takes 4 steps.
 - Non-linear recursion takes 3 steps.

Finding ancestors

Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself.

Non-linear

- For non-linear recursion, need to join newly generated \(Ancestor \) rows with all existing \(Ancestor \) rows

Table Natural \((n)\) contains 1, 2, …, 100

- Which numbers are even/odd?
 - An odd number plus 1 is an even number.
 - An even number plus 1 is an odd number.
 - 1 is an odd number.

Even(n)

\[
\text{WITH Even(n) AS } \\
\quad (\text{SELECT } n \text{ FROM Natural } \\
\quad \quad \text{WHERE } n = \text{ANY} (\text{SELECT } n+1 \text{ FROM Odd})).
\]

Mutual recursion example

\[
\text{WITH Odd(n) AS } \\
\quad (\text{SELECT } n \text{ FROM Natural } \\
\quad \quad \text{WHERE } n = 1) \\
\quad \text{UNION} \\
\quad (\text{SELECT } n \text{ FROM Natural } \\
\quad \quad \text{WHERE } n = \text{ANY} (\text{SELECT } n+1 \text{ FROM Even})).
\]
Operational semantics of WITH

1. \(R_1 \leftarrow \emptyset \), ... , \(R_n \leftarrow \emptyset \)
2. Evaluate \(Q_1, \ldots, Q_n \) using the current contents of \(R_1, \ldots, R_n \):
 \(R_{1}^{\text{new}} \leftarrow Q_1, \ldots, R_{n}^{\text{new}} \leftarrow Q_n \)
3. If \(R_{i}^{\text{new}} \neq R_{i} \) for any \(i \):
 3.1. \(R_1 \leftarrow R_1^{\text{new}}, \ldots, R_n \leftarrow R_n^{\text{new}} \)
 3.2. Go to 2.
4. Compute \(Q \) using the current contents of \(R_1, \ldots, R_n \) and output the result.

Computing mutual recursion

\[
\text{Even}(n) \text{ AS } (\text{SELECT } n \text{ FROM Natural WHERE } n = \text{ANY(SELECT } n+1 \text{ FROM Odd)),} \\
\text{Odd}(n) \text{ AS } (\text{SELECT } n \text{ FROM Natural WHERE } n = 1) \\
\text{UNION} \\
(\text{SELECT } n \text{ FROM Natural WHERE } n = \text{ANY(SELECT } n+1 \text{ FROM Even)))}
\]

1. \(\text{Even} = \emptyset, \text{Odd} = \emptyset \)
2. \(\text{Even} = \emptyset, \text{Odd} = \{1\} \)
3. \(\text{Even} = \{2\}, \text{Odd} = \{1\} \)
4. \(\text{Even} = \{2\}, \text{Odd} = \{1, 3\} \)
5. \(\text{Even} = \{2, 4\}, \text{Odd} = \{1, 3\} \)
6. \(\text{Even} = \{2, 4\}, \text{Odd} = \{1, 3, 5\} \)
7. ...
Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WITH
 - A directed edge $R \rightarrow S$ if R is defined in terms of S
 - Label the directed edge "–" if the query defining R is not monotone with respect to S
- Legal SQL3 recursion: no cycle containing a "–" edge
- Called stratified negation
- Bad mix: a cycle with at least one edge labeled "–"

Legal SQL3 recursion example

Find pairs of persons with no common ancestors

```
WITH Ancestor(anc, desc) AS
  (SELECT parent, child FROM Parent) UNION
  (SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2
  WHERE a1.desc = a2.anc)),
Person(person) AS
  (SELECT parent FROM Parent) UNION
  (SELECT child FROM Parent),
NoCommonAnc(person1, person2) AS
  (SELECT p1.person, p2.person FROM Person p1, Person p2
  WHERE p1.person <> p2.person)
  EXCEPT
  (SELECT a1.anc, a2.anc FROM Ancestor a1, Ancestor a2
  WHERE a1.anc = a2.anc)
SELECT * FROM NoCommonAnc;
```

Evaluating stratified negation

- The stratum of a node R is the maximum number of "–" edges on any path from R in the dependency graph
 - Ancestor: stratum 0
 - Person: stratum 0
 - NoCommonAnc: stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: Ancestor and Person
 - Stratum 1: NoCommonAnc
- Intuitively, there is no negation within each stratum

Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)