Relational Database Design Theory
Part II

CPS 116
Introduction to Database Systems

Announcements

- Homework #2 sample solution available
- Project milestone #1 due today (Sep. 30)
- Midterm next Thursday in class
 - Open book, open notes
 - Sample midterm (from last year) available
 - Solution available next Tuesday

Review

- Functional dependencies
 - $X \rightarrow Y$: If two rows agree on X, they must agree on Y
 - A generalization of the key concept
 - Non-key functional dependencies: a source of redundancy
 - Non-trivial $X \rightarrow Y$ where X is not a superkey
 - Called a BCNF violation
 - BCNF decomposition: a method for removing redundancies
 - Given $R(X, Y, Z)$ and a BCNF violation $X \rightarrow Y$, decompose R into $R_1(X, Y)$ and $R_2(X, Z)$
 - A lossless join decomposition
 - Schema in BCNF has no redundancy due to FD's
3NF (BCNF is too much)
Multivalued dependencies: another source of redundancy
4NF (BCNF is not enough)

Motivation for 3NF

Address (street_address, city, state, zip)
 • street_address, city, state → zip
 • zip → city, state

Keys
 • {street_address, city, state}
 • {street_address, zip}

BCNF?
 • Violation: zip → city, state

To decompose or not to decompose

Address₁ (zip, city, state)
Address₂ (street_address, zip)

FD’s in Address₁

FD’s in Address₂

Hey, where is street_address, city, state → zip?
 • Cannot check without joining Address₁ and Address₂ back together

Problem: Some lossless join decomposition is not dependency-preserving

Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?
3NF

- **R** is in Third Normal Form (3NF) if for every non-trivial FD $X \rightarrow A$ (where A is a single attribute), either
 - X is a superkey of R, or
 - A is a member of at least one key of R
- Intuitively, BCNF decomposition on $X \rightarrow A$ would “break” the key containing A
- So **Address** is already in 3NF
- **Tradeoff:**
 - Can enforce all original FD’s on individual decomposed relations
 - Might have some redundancy due to FD’s

BNCF = no redundancy?

- **Student** (SID, CID, club)
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?

SID	CID	club
150	75116	ballet
152	75116	sumo
142	55114	ballet
142	55114	sumo
123	55114	chess
123	55114	golf

- **BNCF?**

- **Redundancies?**

Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c2</td>
</tr>
<tr>
<td>a3</td>
<td>b3</td>
<td>c3</td>
</tr>
<tr>
<td>a4</td>
<td>b4</td>
<td>c4</td>
</tr>
</tbody>
</table>

Must be in R too
MVD examples

Student (SID, CID, club)

- SID → CID
 - Intuition:
 - SID, CID → club
 - SID, CID → SID

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 If X → Y, then X → attr(R) – X – Y
- MVD augmentation:
 If X → Y and V ⊆ W, then XW → YY
- MVD transitivity:
 If X → Y and Y → Z, then X → Z – Y
- Replication (FD is MVD):
 If X → Y, then X → Y
 Try proving things using these!
- Coalescence:
 If X → Y and Z ⊆ Y and there is some W disjoint from Y such that W → Z, then X → Z

An elegant solution: chase

- Given a set of FD’s and MVD’s D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the hypothesis of d, and treat them as “seed” tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(A \rightarrow B)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(B \rightarrow C)</td>
</tr>
</tbody>
</table>

Another proof by chase

In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(A \rightarrow B)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(B \rightarrow C)</td>
</tr>
</tbody>
</table>

In general, both new tuples and new equalities may be generated.

Counterexample by chase

In \(R(A, B, C, D) \), does \(A \rightarrow BC \) and \(CD \rightarrow B \) imply that \(A \rightarrow B \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow BC)</td>
<td>(A \rightarrow BC)</td>
</tr>
</tbody>
</table>
4NF

- A relation \(R \) is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD \(X \rightarrow Y \) in \(R \), \(X \) is a superkey
 - That is, all FD's and MVD's follow from "key \(\rightarrow \) other attributes" (i.e., no MVD's, and no FD's besides key functional dependencies)

- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey
- Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \) (\(Z \) contains attributes not in \(X \) or \(Y \))
- Repeat until all relations are in 4NF

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

- Student (\(SID, CID, club \))
 - 4NF violation: \(SID \rightarrow CID \)
- Enroll (\(SID, CID \))
- Join (\(SID, club \))
 - 4NF

\[
\begin{align*}
\text{ID} & \quad \text{CID} & \quad \text{Join} \\
142 & \quad CPS116 & \quad \text{ballet} \\
142 & \quad CPS116 & \quad \text{sumo} \\
142 & \quad CPS114 & \quad \text{ballet} \\
142 & \quad CPS114 & \quad \text{sumo} \\
123 & \quad CPS116 & \quad \text{golf} \\
123 & \quad CPS116 & \quad \text{golf} \\
123 & \quad CPS116 & \quad \text{golf} \\
\end{align*}
\]
3NF, BCNF, 4NF, and beyond

<table>
<thead>
<tr>
<th>Anomaly/normal form</th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lose FD’s?</td>
<td>No</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Redundancy due to FD’s</td>
<td>Possible</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Redundancy due to MVD’s</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Of historical interests**
 - **1NF**: All column values must be atomic
 - **2NF**: There is no partial functional dependency (a non-trivial FD $X \rightarrow A$ where X is a proper subset of some key)

Summary

- **Philosophy behind BCNF, 4NF**: Data should depend on the key, the whole key, and nothing but the key!
- **Philosophy behind 3NF**: … But not at the expense of more expensive constraint enforcement!