Relational Database Design Theory
Part II

CPS 116
Introduction to Database Systems

Announcements
- Homework #2 sample solution available
- Project milestone #1 due today (Sep. 30)
- Midterm next Thursday in class
 - Open book, open notes
 - Sample midterm (from last year) available
 - Solution available next Tuesday

Review
- Functional dependencies
 - $X \rightarrow Y$: If two rows agree on X, they must agree on Y
 - A generalization of the key concept
- Non-key functional dependencies: a source of redundancy
 - Non-trivial $X \rightarrow Y$ where X is not a superkey
 - Called a BCNF violation
- BCNF decomposition: a method for removing redundancies
 - Given $R(X, Y, Z)$ and a BCNF violation $X \rightarrow Y$, decompose R into $R_1(X, Y)$ and $R_2(X, Z)$
 - A lossless join decomposition
 - Schema in BCNF has no redundancy due to FD’s

Next
- 3NF (BCNF is too much)
- Multivalued dependencies: another source of redundancy
- 4NF (BCNF is not enough)

Motivation for 3NF
- $Address (street_address, city, state, zip)$
 - $street_address, city, state \rightarrow zip$
- $zip \rightarrow city, state$
- Keys
 - \{street_address, city, state\}
 - \{street_address, zip\}
- BCNF?
 - Violation: $zip \rightarrow city, state$

To decompose or not to decompose
$Address_1 (zip, city, state)$
$Address_2 (street_address, zip)$
- FD’s in $Address_1$
 - $zip \rightarrow city, state$
- FD’s in $Address_2$
 - None!
- Hey, where is $street_address, city, state \rightarrow zip$?
 - Cannot check without joining $Address_1$ and $Address_2$ back together
- Problem: Some lossless join decomposition is not dependency-preserving
- Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?
3NF

- R is in Third Normal Form (3NF) if for every non-trivial FD \(X \rightarrow A \) (where \(A \) is a single attribute), either
 - \(X \) is a superkey of \(R \), or
 - \(A \) is a member of at least one key of \(R \)
 - Intuitively, BCNF decomposition on \(X \rightarrow A \) would “break” the key containing \(A \)
- So Address is already in 3NF
- Tradeoff:
 - Can enforce all original FD’s on individual decomposed relations
 - Might have some redundancy due to FD’s

BNCF = no redundancy?

- Student (\(SID, CID, club \))
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?
 - None
 - BCNF?
 - Yes
 - Redundancies?
 - Tons!

Multivalued dependencies

- A multivalued dependency (MVD) has the form \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \)
- \(X \rightarrow Y \) means that whenever two rows in \(R \) agree on all the attributes of \(X \), then we can swap their \(Y \) components and get two new rows that are also in \(R \)

MVD examples

Student (\(SID, CID, club \))

- \(SID \rightarrow CID \)
- \(SID \rightarrow club \)
 - Intuition: given \(SID, CID \) and club are “independent”
 - \(SID, CID \rightarrow club \)
 - Trivial: \(LHS \cup RHS = \) all attributes of \(R \)
 - \(SID, CID \rightarrow SID \)
 - Trivial: \(LHS \supseteq RHS \)

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 - If \(X \rightarrow Y \), then \(X \rightarrow atto(R) - X - Y \)
- MVD augmentation:
 - If \(X \rightarrow Y \) and \(V \subseteq W \), then \(XV \rightarrow YV \)
- MVD transitivity:
 - If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \rightarrow Y \)
- Replication (FD is MVD):
 - If \(X \rightarrow Y \), then \(X \rightarrow Y \)
 - Try proving things using these!
- Coalescence:
 - If \(X \rightarrow Y \) and \(Z \subseteq Y \) and there is some \(W \) disjoint from \(Y \) such that \(W \rightarrow Z \), then \(X \rightarrow Z \)

An elegant solution: chase

- Given a set of FD’s and MVD’s \(D \), does another dependency \(d \) (FD or MVD) follow from \(D \)?
- Procedure
 - Start with the hypothesis of \(d \), and treat them as “seed” tuples in a relation
 - Apply the given dependencies in \(D \) repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of \(d \), we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>A</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>C</td>
</tr>
</tbody>
</table>

Another proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>$b_1 = b_2$</td>
</tr>
<tr>
<td>$B \rightarrow C$</td>
<td>$c_1 = c_2$</td>
</tr>
</tbody>
</table>

Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow BC$</td>
<td>$b_1 = b_2$</td>
</tr>
</tbody>
</table>

4NF

- A relation R is in Fourth Normal Form (4NF) if:
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD’s and MVD’s follow from “key → other attributes” (i.e., no MVD’s, and no FD’s besides key functional dependencies)

- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y
- Repeat until all relations are in 4NF

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

- $R_{enroll} = Student(SID, CID, club)$
 - 4NF violation: $SID \rightarrow CID$

- $R_{enroll} = Join(SID, club)$
 - 4NF
3NF, BCNF, 4NF, and beyond

<table>
<thead>
<tr>
<th>Anomaly/normal form</th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lose FD’s?</td>
<td>No</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Redundancy due to FD’s</td>
<td>Possible</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Redundancy due to MVD’s</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
</tr>
</tbody>
</table>

- Of historical interests
 - 1NF: All column values must be atomic
 - 2NF: There is no partial functional dependency (a non-trivial FD $X \rightarrow A$ where X is a proper subset of some key)

Summary
- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!
- Philosophy behind 3NF:
 … But not at the expense of more expensive constraint enforcement!