Query Processing

CPS 116
Introduction to Database Systems

Announcements

탈

Courses project milestone #2 due this Thursday
No class or office hours next Tuesday (Nov. 16): I am out of town
· May schedule a make-up lecture later if necessary

Overview

· Many different ways of processing the same query
 ▪ Scan? Sort? Hash? Use an index?
 ▪ All have different performance characteristics and/or make different assumptions about data
· Best choice depends on the situation
 ▪ Implement all alternatives
 ▪ Let the query optimizer choose at run-time

Notation

· Relations: R, S
· Tuples: r, s
· Number of tuples: |R|, |S|
· Number of disk blocks: B(R), B(S)
· Number of memory blocks available: M
· Cost metric
 ▪ Number of I/O’s
 ▪ Memory requirement

Table scan

· Scan table R and process the query
 ▪ Selection over R
 ▪ Projection of R without duplicate elimination
· I/O’s: B(R)
 ▪ Trick for selection: stop early if it is a lookup by key
· Memory requirement: 2 (double buffering)
· Not counting the cost of writing the result out
 ▪ Same for any algorithm!
 ▪ Maybe not needed—results may be pipelined into another operator

Nested-loop join

· R ÷j S
· For each block of R, and for each r in the block:
 For each block of S, and for each s in the block:
 Output r if p evaluates to true over r and s
 ▪ R is called the outer table; S is called the inner table
· I/O’s: B(R) + |R| ⋅ B(S)
· Memory requirement: 3 (double buffering)
· Improvement: block-based nested-loop join
 ▪ For each block of R, and for each block of S:
 For each r in the R block, and for each s in the S block: …
 ▪ I/O’s: B(R) + B(R) ⋅ B(S)
 ▪ Memory requirement: same as before
More improvements of nested-loop join

- Stop early
 - If the key of the inner table is being matched
 - May reduce half of the I/Os
- Make use of available memory
 - Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
 - I/Os: $B(R) + \lceil B(R) / (M - 2) \rceil \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S) / M$
 - Memory requirement: M (as much as possible)
- Which table would you pick as the outer?

External merge sort

Problem: sort R, but R does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\lceil B(R) / M \rceil$ level-0 sorted runs
- Pass i: merge $(M - 1)$ level-$(i-1)$ runs at a time, and write out a level-i run
 - $(M - 1)$ memory blocks for input, 1 to buffer output
 - # of level-i runs = $\lceil \# \text{ of level-} (i-1) \text{ runs} / (M - 1) \rceil$
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Performance of external merge sort

- Number of passes: $\lceil \log_{M-1} \lceil B(R) / M \rceil \rceil + 1$
- I/Os
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract $B(R)$ for the final pass
 - Roughly, this is $O(B(R) \cdot \log_M B(R))$
- Memory requirement: M (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - More sequential I/Os
 - Trade-off: larger cluster → smaller fan-in (more passes)

Sort-merge join

- $R \bowtie_{R.A = S.B} S$
- Sort R and S by their join attributes, and then merge r, s = the first tuples in sorted R and S
 - Repeat until one of R and S is exhausted:
 - If $r.A > s.B$ then $s = \text{next tuple in } S$
 - Else if $r.A < s.B$ then $r = \text{next tuple in } R$
 - Else output all matching tuples, and $r, s = \text{next in } R$ and S
- I/Os: sorting + $2 B(R) + 2 B(S)$
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins
Example

\[\begin{align*}
 R: & \quad S: \\
 r_1.A = 1 & \quad s_1.B = 1 \quad r_1.s_1 \\
 r_2.A = 3 & \quad s_2.B = 2 \quad r_2.s_3 \\
 r_3.A = 3 & \quad s_3.B = 3 \quad r_3.s_4 \\
 r_4.A = 5 & \quad s_4.B = 3 \quad r_5.s_5 \\
 r_5.A = 7 & \quad s_5.B = 8 \quad r_7.s_5 \\
 r_6.A = 7 & \\
 r_7.A = 8 &
\end{align*} \]

Optimization of SMJ

- Idea: combine join with the merge phase of merge sort
- Sort: produce sorted runs of size \(M \) for \(R \) and \(S \)
- Merge and join: merge the runs of \(R \), merge the runs of \(S \), and merge-join the result streams as they are generated!

\[
\text{Sorted runs} \quad \begin{array}{c}
 R \\
 s_1, s_2, s_3, s_4, s_5 \\
 B \\
 R \\
 s_1, s_2, s_3, s_4, s_5 \\
 B \\
 S \\
\end{array} \quad \begin{array}{c}
 \text{Disk} \\
 \text{Disk} \\
 \text{Disk} \\
 \text{Disk} \\
 \text{Disk} \\
\end{array} \quad \begin{array}{c}
 \text{Memory} \\
 \text{Join} \\
 \text{Merge} \\
 \text{Merge} \\
 \text{Merge} \\
\end{array} \]

Performance of two-pass SMJ

- I/O: 3 \(\cdot \) (\(B(R) \) + \(B(S) \))
- Memory requirement
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: \(M > B(R) / M + B(S) / M \)
 - \(M > \text{sqrt}(B(R) + B(S)) \)

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- \text{GROUP BY} and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - Combine partial aggregate values during merge
 - Partial aggregate values don’t always work though
 - Examples: \text{SUM(DISTINCT} \ldots \text{), MEDIAN(} \ldots \text{)}

Hash join

- \(R \bowtie_{R.A = S.B} S \)
- Main idea
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

Partitioning phase

- Partition \(R \) and \(S \) according to the same hash function on their join attributes

\[
\text{Memory} \quad \begin{array}{c}
 R \\
 r_1, r_2, r_3, r_4, r_5, r_7 \\
 r_6 \\
\end{array} \quad \begin{array}{c}
 \text{Disk} \\
 \text{Disk} \\
 \text{Disk} \\
 \text{Disk} \\
 \text{Disk} \\
 \text{Disk} \\
\end{array} \quad \begin{array}{c}
 \text{Memory} \\
 \text{Join} \\
 \text{Merge} \\
 \text{Merge} \\
 \text{Merge} \\
 \text{Merge} \\
\end{array} \]

Same for \(S \)

\(M - 1 \) partitions of \(R \)
Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

![Diagram of Probing Phase](image)

Performance of hash join

- I/O’s: $3 \cdot (B(R) + B(S))$
- Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 \geq B(R) / (M - 1)$
 - $M > \sqrt{B(R)}$
 - We can always pick R to be the smaller relation, so: $M > \sqrt{\text{min}(B(R), B(S))}$

Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - See the duality in multi-pass merge sort here?

Hash join versus SMJ

(Assuming two-pass)

- I/O’s: same
- Memory requirement: hash join is lower
 - $\sqrt{\text{min}(B(R), B(S))} < \sqrt{B(R) + B(S)}$
 - Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- May be best if many tuples join
 - Example: non-equality joins that are not very selective
- Necessary for black-box predicates
 - Example: ... \text{WHERE} user_defined_pred(R.A, S.B)

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Selection using index

- Equality predicate: $\sigma_{A=r}(R)$
 - Use an ISAM, B+-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B+-tree) on $R(A)$
 - Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful
 - Example: B+-tree index on $R(A, B)$
 - How about B*-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>v}(R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A>v$
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% $|R|$
 - I/O’s for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples

Index nested-loop join

- $R \bowtie_{R.A=S.B} S$
- Idea: use the value of $R.A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:
 - Use the index on $S(B)$ to retrieve s with $s.B = r.A$
 - Output rs
- I/O’s: $B(R) + |R| \cdot$ (index lookup)
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if $|R|$ is not too big
 - Better pick R to be the smaller relation
- Memory requirement: 2

Zig-zag join using ordered indexes

- $R \bowtie_{R.A=S.B} S$
- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 - Possibly skipping many keys that don’t match
Summary of tricks

❖ Scan
 ▪ Selection, duplicate-preserving projection, nested-loop join

❖ Sort
 ▪ External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation

❖ Hash
 ▪ Hash join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation

❖ Index
 ▪ Selection, index nested-loop join, zig-zag join