Query Optimization

CPS 116
Introduction to Database Systems

Announcements

- Homework #4 assigned today (Nov. 18); due in two weeks (Dec. 2)
- Student presentation on Dec. 2 on databases for small devices
 - Allows your lowest homework grade to be dropped
 - Need more 1-2 more volunteers

Query optimization

- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do:

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
 - Join reordering: \times and $\triangleright\triangleright$ are associative and commutative (except column ordering, but that is unimportant)

![Diagram of relational algebra operations]

More relational algebra equivalences

- Convert $\sigma_p \times \sigma_q$ to/from $\sigma_{p \land q}$: $\sigma_p(R \times S) = R \triangleright\triangleright_p S$
- Merge/split σ: $\sigma_p(R) = \sigma_{p_1 \land p_2} R$
- Merge/split π: $\pi_{L_1}(\pi_{L_2} R) = \pi_{L_1} R$, where $L_1 \subseteq L_2$
- Push down/pull up σ: $\pi_{L}(\sigma_p R) = \pi_{\pi(L')} \sigma_p \pi(R)$, where L' is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

- Convert $\sigma_p \times \sigma_q$ to/from $\sigma_{p \land q}$
- Push down σ: $\pi_{E_{\text{Title}}}$
- Convert $\sigma_p \times \sigma_q$ to/from $\sigma_{p \land q}$
- Push down σ: $\sigma_{E_{\text{Name}}}$
- Convert $\sigma_p \times \sigma_q$ to/from $\sigma_{p \land q}$
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why?
 - Why not?
- Join smaller relations first, and avoid cross product
 - Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
 - Wrong
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
 - Right
Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';

 - New subquery is inefficient (computes enrollment for all courses)
 - Suppose

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';

- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;

- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));

- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll = DS.cnt;

 - Process the outer query without the subquery
 - Collect bindings
 - Evaluate the subquery with bindings
 - Finally, refine the outer query

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones

- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

- PROJECT (title)
- MERGE-JOIN (CID)
- MERGE-JOIN (SID)
- SCAN (Course)
- SCAN (Enroll)
- SCAN (Student)
- FILTER (name = "Bart")

- Example: SORT (GID) takes $2 \times B(input)$
- But what is $B(input)$?

- We need: size of intermediate results

Selections with equality predicates

- Q: $\sigma_{A = v} R$
- Suppose the following information is available
 - Size of R: $|R|$
 - Number of distinct A values in R: $|\pi_A R|$
- Assumptions
 - Values of A are uniformly distributed in R
 - Values of v in Q are uniformly distributed over all RA values
- $|Q| \approx |R|/|\pi_A R|$
 - Selectivity factor of $(A = v)$ is $1/|\pi_A R|$

Conjunctive predicates

- Q: $\sigma_A = a$ and $B = v R$
- Additional assumptions
 - $(A = a)$ and $(B = v)$ are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: A is the key
- $|Q| \approx |R|/\left(|\pi_A R| \cdot |\pi_B R| \right)$
 - Reduce total size by all selectivity factors
Negated and disjunctive predicates

\(Q: \sigma_{A \neq v} R \)
- \(|Q| \approx |R| \cdot (1 - 1/|\pi_A R|)\)
 - Selectivity factor of \(\neg p \) is \((1 - \text{selectivity factor of } p) \)

\(Q: \sigma_{A = u \text{ or } B = v} R \)
- \(|Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|)\)
 - No! Tuples satisfying \((A = u)\) and \((B = v)\) are counted twice
 - Intuition: \((A = u)\) or \((B = v)\) is equivalent to \(\neg (\neg (A = u) \text{ AND } \neg (B = v))\)

Range predicates

\(Q: \sigma_{A > v} R \)
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3\)
- With more information
 - Largest \(R.A \) value: \(\text{high}(R.A) \)
 - Smallest \(R.A \) value: \(\text{low}(R.A) \)
 - \(|Q| \approx |R| \cdot (\text{high}(R.A) - v) / (\text{high}(R.A) - \text{low}(R.A))\)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

\(Q: R(A, B) \bowtie S(A, C) \)
- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S|\) then \(\pi_A R \subseteq \pi_A S\)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \(|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|)\)
 - Selectivity factor of \(R.A = S.A\) is \(1/\max(|\pi_A R|, |\pi_A S|)\)
Multiway equi-join

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A(R \bowtie S) = \pi_A(R) \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins

Multiway equi-join (cont’d)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T|\)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: \frac{1}{\max(|\pi_B R|, |\pi_B S|)} \)
 - \(S.C = T.C: \frac{1}{\max(|\pi_C S|, |\pi_C T|)} \)
 - \(|Q| \approx \frac{|R| \cdot |S| \cdot |T|}{\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)} \)

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”

\[
\begin{align*}
\text{SELECT} & \quad \text{FROM Student WHERE GPA > 3.9;} \\
\text{SELECT} & \quad \text{FROM Student WHERE GPA > 3.9 AND GPA > 3.9;}
\end{align*}
\]
- Not covered: better estimation using histograms
Search for the best plan

- Huge search space
- "Bushy" plan example:
 - Just considering different join orders, there are close to \((n - 1)! \cdot 4^{n-1}\) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n\)
 - 30240 for \(n = 6\)
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
- How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n\)?
 - Significantly fewer, but still lots

A greedy algorithm

- \(S_1, \ldots, S_n\)
 - Say selections have been pushed down; i.e., \(S_j = \sigma_{R_i}\)
- Start with the pair \(S_j, S_k\) with the smallest estimated size for \(S_j \bowtie S_k\)
- Repeat until no relation is left:
 - Pick \(S_j\) from the remaining relations such that the join of \(S_j\) and the current result yields an intermediate result of the smallest size
 - Pick most efficient join method
 - Minimize expected size
 - Current subplan
 - Remaining relations to be joined
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass \(k \): Find the best \(k \)-table plans (for each combination of \(k \) tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.).

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \)
 - Interesting orders produced by \(X \) subsume those produced by \(Y \)
 - Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - At most one for each interesting order
Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach