Query Optimization

CPS 116
Introduction to Database Systems

Announcements
- Homework #4 assigned today (Nov. 18); due in two weeks (Dec. 2)
- Student presentation on Dec. 2 on databases for small devices
 - Allows your lowest homework grade to be dropped
 - Need more 1-2 more volunteers

Query optimization
- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Plan enumeration in relational algebra
- Apply relational algebra equivalences
 - Join reordering: × and ÷ are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences
- Convert σp× to/from ÷q: σp(R × S) = R ÷q S
- Merge/split σ: σq1(σq2 R) = σq1∧q2 R
- Merge/split π: πL1(πL2 R) = πL1 R, where L1 ⊆ L2
- Push down/pull up σ:
 - σp∧p∧p, (R ÷q S) = (σp, R) ÷q (σp, S), where
 - p is a predicate involving only R columns
 - q is a predicate involving only S columns
 - p is a predicate involving both R and S columns
- Push down π: πL (σp R) = πL (σp (πL L R)), where
 - L is the set of columns referenced by p that are not in L
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
- Wrong—consider two Barr’s, each taking two classes
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
- Right—assuming Student.SID is a key

Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';
- New subquery is inefficient (computes enrollment for all courses)
- Suppose a CPS class is empty?

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;
- Process the outer query without the subquery
- Collect bindings
- Evaluate the subquery with bindings
- Finally, refine the outer query

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

\[
\text{PROJECT (null)} \rightarrow \text{MERGE-JOIN (CID)} \rightarrow \text{SORT (SID)} \rightarrow \text{SCAN (Course)}
\]

- Input to SORT(GID):
 \[
 \text{FILTER (name = "Bart")} \rightarrow \text{SORT (SID)} \rightarrow \text{SCAN (Zed)}
 \]

- We have: cost estimation for each operator
 - Example: SORT(GID) takes 2 × B(input)
 - But what is B(input)?
- We need: size of intermediate results

Conjunctive predicates

- \(Q: \sigma_A = a \land B = v \)
- Additional assumptions
 - \((A = a) \land (B = v)\) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: \(A \) is the key
- \(|Q| \approx |R| \cdot \left(|\pi_A R| \cdot |\pi_B R| \right) \)
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates

- \(Q: \neg \sigma_A = a \lor \neg \sigma_B = v \)
- Additional assumptions
 - \((a = A) \lor (v = B)\) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: \(A \) is the key
- \(|Q| \approx |R| \cdot \left(1 - \frac{1}{|\pi_A R|} \right) \)
 - Selectivity factor of \((A = a) \lor (B = v) \) is \(1 / |\pi_A R| \)

Range predicates

- \(Q: \sigma_A \geq R \)
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3\)
- With more information
 - Largest \(R.A \) value: \(\text{high}(R.A) \)
 - Smallest \(R.A \) value: \(\text{low}(R.A) \)
 - \(|Q| \approx |R| \cdot \left(\frac{\text{high}(R.A) - v}{\text{high}(R.A) - \text{low}(R.A)} \right) \)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Selections with equality predicates

- \(Q: \sigma_A = a \land R \)
- Suppose the following information is available
 - Size of \(R \): \(|R|\)
 - Number of distinct \(A \) values in \(R \): \(|\pi_A R|\)
- Assumptions
 - Values of \(A \) are uniformly distributed in \(R \)
 - Values of \(v \) in \(Q \) are uniformly distributed over all \(R.A \) values
- \(|Q| \approx \frac{|R|}{|\pi_A R|} \)
 - Selectivity factor of \((A = a) \) is \(1 / |\pi_A R| \)

Two-way equi-join

- \(Q: R(A, B) \bowtie S(A, C) \)
- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S|\) then \(R \subseteq S \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
 - \(|Q| \approx |R| \cdot |S| / \max \{|\pi_A R|, |\pi_A S|\}\)
 - Selectivity factor of \(R.A = S.A \) is \(1 / \max \{|\pi_A R|, |\pi_A S|\} \)
Multiway equi-join

- **Q**: \(R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A(R \bowtie S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 - **SELECT** FROM Student WHERE GPA > 3.9;
 - **SELECT** FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms

Multiway equi-join (cont’d)

- **Q**: \(R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 \[|R| \cdot |S| \cdot |T| \]
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|) \)
 - \(S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|) \)
 - \(|Q| \approx (|R| \cdot |S| \cdot |T|)/(\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)) \)

Search for the best plan

- Huge search space
 - “Bushy” plan example:
 - Just considering different join orders, there are close to \((n-1)! \cdot 4^{n-1}\) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n \)
 - 30240 for \(n = 6 \)
 - And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n \)?
 - Significantly fewer, but still lots— \(n! \) (720 for \(n = 6 \))

A greedy algorithm

- \(S_1, \ldots, S_n \)
 - Say selections have been pushed down; i.e., \(S_i = \sigma_{p_i} R_i \)
 - Start with the pair \(S_i, S_j \) with the smallest estimated size for \(S_i \bowtie S_j \)
 - Repeat until no relation is left:
 - Pick \(S_i \) from the remaining relations such that the join of \(S_i \) and the current result yields an intermediate result of the smallest size
 - Pick most efficient join method
 - Minimize expected size

Current subplan

Remaining relations to be joined

Pick most efficient join method
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ... Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite...

The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
 - Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach