Web Searching & Indexing

CPS 116
Introduction to Database Systems

Announcements

- Homework #4 due on Thursday (Dec. 2)
- Homework #3 graded
 - Available for pick up in my office tomorrow
- Course project demo signup begins tomorrow via email
- Final exam on Friday, Dec. 10
 - More info and a brief review this Thursday

Keyword search

What are the documents containing both "database" and "search"?
Keywords × documents

<table>
<thead>
<tr>
<th>All keywords</th>
<th>Document 1</th>
<th>Document 2</th>
<th>Document 3</th>
<th>Document 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>"cat"</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>"database"</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>"dog"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>"search"</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1 means keyword appears in the document
0 means otherwise

- Inverted lists: store the matrix by rows
- Signature files: store the matrix by columns

Inverted lists

- Store the matrix by rows
- For each keyword, store an inverted list
 - (keyword, doc-id-list)
 - ("database", {3, 7, 142, 857, …})
 - ("search", {3, 9, 192, 512, …})
 - It helps to sort doc-id-list (why?)
- Vocabulary index on keywords
 - B⁺-tree or hash-based
- How large is an inverted list index?

Using inverted lists

- Documents containing "database"
 - Use the vocabulary index to find the inverted list for "database"
 - Return documents in the inverted list
- Documents containing “database” AND “search”
- OR? NOT?
What are “all” the keywords?

- All sequences of letters (up to a given length)?
 - … that actually appear in documents!
- All words in English?
- Plus all phrases?
 - Alternative: approximate phrase search by proximity
- Minus all stop words
 - They appear in nearly every document: e.g., a, of, the, it
- Combine words with common stems
 - Example: database, databases
 - They can be treated as the same for the purpose of search

Frequency and proximity

- Frequency
 - \(\{ \text{keyword}, \{ \langle \text{doc-id}, \text{number-of-occurrences} \rangle, \langle \text{doc-id}, \text{number-of-occurrences} \rangle, \ldots \} \} \)
- Proximity (and frequency)
 - \(\{ \text{keyword}, \{ \langle \text{doc-id}, \{ \text{position-of-occurrence}_1 \}, \{ \text{position-of-occurrence}_2, \ldots \} \rangle, \langle \text{doc-id}, \{ \text{position-of-occurrence}_1, \ldots \} \rangle, \ldots \} \} \)
 - When doing AND, check for positions that are near

Signature files

- Store the matrix by columns and compress them
- For each document, store a \(w \)-bit signature
- Each word is hashed into a \(w \)-bit value, with only \(s < w \) bits turned on
- Signature is computed by taking the bit-wise OR of the hash values of all words on the document

\[
\begin{align*}
\text{hash(“database”) } &= 0110 \quad \text{doc}_1 \text{ contains “database”: 0110 “database”?} \\
\text{hash(“dog”) } &= 1100 \quad \text{doc}_2 \text{ contains “dog”: 1100} \\
\text{hash(“cat”) } &= 0010 \quad \text{doc}_3 \text{ contains “cat” and “dog”: 1110}
\end{align*}
\]

- Some false positives; no false negatives
Bit-sliced signature files

- Motivation
 - To check if a document contains a word, we only need to check the bits that are set in the word’s hash value.
 - So why bother retrieving all w bits of the signature?
- Instead of storing n signature files, store w bit slices.
- Only check the slices that correspond to the set bits in the word’s hash value.
- Start from the sparse slices.

Inverted lists versus signatures

- Inverted lists better for most purposes (TODS, 1998)
- Problems of signature files

 - Saving grace of signature files

Ranking result pages

- A single search may return many pages
 - A user will not look at all result pages.
 - Complete result may be unnecessary.
- Result pages need to be ranked.
- Possible ranking criteria
 - Based on content
 - Number of occurrences of the search terms.
 - Similarity to the query text.
 - Based on link structure
 - Backlink count.
 - PageRank.
 - And more...
Textual similarity

- Vocabulary: \([w_1, \ldots, w_n]\)
- IDF (Inverse Document Frequency): \([f_1, \ldots, f_n]\)
 - \(f_i = 1 / \text{the number of times } w_i \text{ appears on the Web}\)
- Significance of words on page \(p\): \([p_1 f_1, \ldots, p_n f_n]\)
 - \(p_i\) is the number of times \(w_i\) appears on \(p\)
- Textual similarity between two pages \(p\) and \(q\) is defined to be
 \[\sum_{i=1}^{n} p_i q_i f_i^2\]

Why weight significance by IDF?

Problems with content-based ranking

- Many pages containing search terms may be of poor quality or irrelevant
 - Example: a page with just a line “search engine”
- Many high-quality or relevant pages do not even contain the search terms
 - Example: Google homepage
- Page containing more occurrences of the search terms are ranked higher; spamming is easy
 - Example: a page with line “search engine” repeated many times
Backlink

- A page with more backlinks is ranked higher
- Intuition: Each backlink is a “vote” for the page’s importance

Google’s PageRank

- Main idea: Pages pointed by high-ranking pages are ranked higher
 - Definition is recursive by design
 - Based on global link structure; hard to spam
- Naïve PageRank
 - $N(p)$: number of outgoing links from page p
 - $B(p)$: set of pages that point to p
 - $\text{PageRank}(p) = \sum_{q \in B(p)} (\text{PageRank}(q) / N(q))$
 - Each page p gets a boost of its importance from each page that points to p
 - Each page q evenly distributes its importance to all pages that q points to

Calculating naïve PageRank

- Initially, set all PageRank’s to 1; then evaluate
 $\text{PageRank}(p) \leftarrow \sum_{q \in B(p)} (\text{PageRank}(q) / N(q))$
 repeatedly until the values converge (i.e. a fixed point is reached)
Random surfer model

- A random surfer
 - Starts with a random page
 - Randomly selects a link on the page to visit next
 - Never uses the “back” button

- PageRank(p) measures the probability that a random surfer visits page p

Problems with the naïve PageRank

- Dead end: a page with no outgoing links
 - A dead end causes all importance to “leak” eventually out of the Web

- Spider trap: a group of pages with no links out of the group
 - A spider trap will eventually accumulate all importance of the Web

Practical PageRank

- d: decay factor

- $PageRank(p) = d \cdot \sum_{q \in B(p)} (PageRank(q)/N(q)) + (1 - d)$

- Intuition in the random surfer model
 - A surfer occasionally gets bored and jump to a random page on the Web instead of following a random link on the current page
Inverted lists in practice contain a lot of context information. PageRank is not the final ranking:
- Type-weight: depends on the type of the occurrence
 - For example, large font weights more than small font
- Count-weight: depends on the number of occurrences
 - Increases linearly first but then tapers off
- For multiple search terms, nearby occurrences are matched together and a proximity measure is computed
 - Closer proximity weights more

Trie: a string index

- A tree with edges labeled by characters
- A node represents the string obtained by concatenating all characters along the path from the root
- Compact trie: replace a path without branches by a single edge labeled by a string

Suffix tree

Index all suffixes of a large string in a compact trie:
- Can support arbitrary substring matching
- Internal nodes have fan-out ≥ 2 (except the root)
- No two edges out of the same node can share the same first character

To get linear space:
- Instead of inlining the string labels, store pointers to them in the original string
- Bad for external memory
Patricia trie, Pat tree, String B-tree

A Patricia trie is just like a compact trie, but
- Instead of labeling each edge by a string, only label by the first character and the string length
- Leaves point to strings
 - Faster search (especially for external memory) because of inlining of the first character
 - But must validate answer at leaves for skipped characters
- A Pat tree indexes all suffixes of a string in a Patricia trie
- A String B-tree uses a Patricia trie to store and compare strings in B-tree nodes

Summary

- General tree-based string indexing tricks
 - Trie, Patricia trie, String B-tree
- Two general ways to index for substring queries
 - Index words: inverted lists, signature files
 - Index all suffixes: suffix tree, Pat tree, suffix array (not covered)
- Web search and information retrieval go beyond substring queries
 - IDF, PageRank, …