Announcements

- Homework #3 grades recorded
- Homework #4 due today (December 2)
 - Will be graded this weekend
 - Sample solution will be available at your demo
- Remember to sign up for course project demo (see email)
- Final exam next Friday (December 10) 7–10pm
 - Comprehensive (everything up to today’s lecture, with emphasis on the second half of the course, and materials exercised in homework assignments)
 - Open book, open notes
 - Same format as sample final exam
 - No time pressure (I promise!)

Review: relational basics

- Relational model/algebra → physical data independence
- Entity-relationship design
- Design theory (FD’s, MVD’s, 3NF, BCNF, 4NF) → help eliminate redundancy
- SQL
 - NULL and three-value logic → nifty feature, big mess
 - Bug versus set semantics
 - SFW (or SP) queries, subqueries, grouping and aggregation
 - Modifications
 - Constraints → the more you know the better you can do
 - Triggers (ECA) → “active” data
 - Views → logical data independence
 - Indexes → reintroduce redundancy to improve performance
- Transactions and isolation levels

Review: XML

- Data model: well-formed vs. valid (DTD ≈ schema)
- Query languages
 - XPath: (branching) path expressions (with conditions)
 - XQuery: FLWR, subqueries in return (restructuring), quantified expressions, aggregation, ordering
 - XSLT: structural recursion with templates
- Programming: SAX (one pass) vs. DOM (in memory)
- Relational vs. XML
 - Tables vs. hierarchies (or graphs in general)
 - Storing XML as relations
 - Schema-oblivious: node/edge based, interval based, path based, etc.
 - Schema-aware
 - Joins vs. path traversals

Review: physical data organization

- Storage hierarchy (DC vs. Pluto) → count I/O’s
- Disk geometry: three components of access cost; random vs. sequential I/O
- Data layout
 - Record layout (handling variable-length fields, NULL’s)
 - Block layout (NSM, PAX) → inter-/intra-record locality
- Access paths
 - Primary versus secondary indexes
 - Tree-based indexes: ISAM, B+-tree
 - Text indexes: inverted lists, signature files, tries
 → Again, reintroduce redundancy to improve performance
 → Fundamental trade-off: query versus update cost

Review: query processing, optimization

- Processing
 - Scan-based algorithms
 - Sort- and hash-based algorithms (and their duality)
 - Index-based algorithms
 - Pipelined execution with iterators
- Optimization (or “goodification”?)
 - Heuristics: push selections down; smaller joins first
 → Reduce the size of intermediate results
 - Cost-based
 - Query rewrite: merge blocks to get a bigger search space
 - Cost estimation: result size estimation; use statistics
 - Search algorithm: dynamic programming (+ interesting orders)

Review: transaction processing

- ACID properties
- Concurrency control
 - Serial and conflict-serializable schedules
 - Locking-based: 2PL, strict 2PL
- Recovery with logging
 - Steal: requires undo logging
 - No force: requires redo logging
 - WAL (log holds the truth)
 - Fuzzy checkpointing