Announcements (Thurs. September 1)

- Please sign up for mailing list and database (IBM DB2) accounts on the sign-up sheet (now circulating)
- Homework #1 will be assigned next Tuesday
- Office hours: see also course Web page
 - Jun: TTH afternoon
 - Ming: MW late afternoon
- Book update
 - $101 (new) / $75.75 (used) from Duke bookstore
 - Available possibly tomorrow and definitely by next Tuesday
 - $86.15 (new, free shipping) from Amazon

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
 - Set-valued attributes not allowed
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)
 - Duplicate tuples are not allowed

Simplicity is a virtue!
Example

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though the output is always in some order)

<table>
<thead>
<tr>
<th>CID</th>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS116</td>
<td>Intro. to Database Systems</td>
</tr>
<tr>
<td>CPS130</td>
<td>Analysis of Algorithms</td>
</tr>
<tr>
<td>CPS114</td>
<td>Computer Networks</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
</tr>
<tr>
<td>857</td>
<td>CPS116</td>
</tr>
<tr>
<td>857</td>
<td>CPS130</td>
</tr>
<tr>
<td>456</td>
<td>CPS114</td>
</tr>
</tbody>
</table>

Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema

Example

<table>
<thead>
<tr>
<th>Student (SID integer, name string, age integer, GPA float)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS116 Intro. to Database Systems</td>
</tr>
<tr>
<td>CPS130 Analysis of Algorithms</td>
</tr>
<tr>
<td>CPS114 Computer Networks</td>
</tr>
</tbody>
</table>

Example

- Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)

- Instance
 - { (142, Barr, 10, 2.3), (123, Milhouse, 10, 3.1), ... }
 - { (CPS116, Intro. to Database Systems), ... }
 - { (142, CPS116), (142, CPS114), ... }
Relational algebra
A language for querying relational databases based on operators:

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection
- Input: a table \(R \)
- Notation: \(\sigma_p R \)
 - \(p \) is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as \(R \), but only rows of \(R \) that satisfy \(p \)

Selection example
- Students with GPA higher than 3.0
 \(\sigma_{\text{GPA} > 3.0} \text{Student} \)
More on Selection

- Selection predicate in general can include any column of R, constants, comparisons ($=$, \leq, etc.), and Boolean connectives (\land: and, \lor: or, and \lnot: not)
 - Example: straight A students under 18 or over 21
 \[
 \sigma_{GPA \geq 4.0 \land (\text{age} < 18 \lor \text{age} > 21)} \text{Student}
 \]
- But you must be able to evaluate the predicate over a single row of the input table
 - Example: student with the highest GPA
 \[
 \sigma_{\text{GPA} = \text{all GPA in Student}} \text{Student}
 \]

Projection

- Input: a table R
- Notation: $\pi_L R$
 - L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

Projection example

- ID’s and names of all students
 \[
 \pi_{\text{SID, name}} \text{ Student}
 \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

\[\pi_{\text{age}} \text{Student} \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

\[\text{Student} \times \text{Enroll} \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
<th>SID</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>142</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>142</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>142</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>142</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>123</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>123</td>
<td>CPS114</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows)

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>CPS116</td>
</tr>
</tbody>
</table>

- That means cross product is commutative, i.e., $R \times S = S \times R$ for any R and S

Derived operator: join

- Input: two tables R and S
- Notation: $R \bowtie S$
 \- p is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p
- Shorthand for

Join example

- Info about students, plus CID's of their courses

Use table_name.column_name syntax to disambiguate identically named columns from different input tables.
Derived operator: natural join

- Input: two tables R and S
- Notation: $R \bowtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for $\pi_L (R \bowtie p S)$, where
 - p equates all attributes common to R and S
 - L is the union of all attributes from R and S, with duplicate attributes removed

Natural join example

- $Student \bowtie Enroll = \pi, (Student \bowtie Enroll)$

- $Student.SID = Enroll.SID$

Union

- Input: two tables R and S
- Notation: $R \cup S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with duplicate rows eliminated
 - Two rows are identical if they agree on all attributes
Difference

- Input: two tables R and S
- Notation: $R - S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not found in S

Derived operator: intersection

- Input: two tables R and S
- Notation: $R \cap S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S
- Shorthand for
- Also equivalent to
- And to

Renaming

- Input: a table R
- Notation: $\rho_S R$, or $\rho_{A_1,A_2,...} R$
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as R
- Used to
 - Avoid confusion caused by identical column names
 - Create identical columns names for natural joins
Renaming example

- SID’s of students who take at least two courses

\[\pi_{\text{SID}}(\text{Enroll} \times \text{Enroll}) \]

Expression tree syntax:

- Selection: \(\sigma \)
- Projection: \(\pi \)
- Cross product: \(\times \)
- Union: \(\cup \)
- Difference: \(- \)
- Renaming: \(\rho \)
 - Does not really add to processing power

Summary of core operators

- Selection: \(\sigma_p R \)
- Projection: \(\pi_{L R} \)
- Cross product: \(R \times S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Renaming: \(\rho_{A_1, A_2, \ldots} R \)

Summary of derived operators

- Join: \(R \bowtie S \)
- Natural join: \(R \bowtie S \)
- Intersection: \(R \cap S \)

- Many more
 - Semijoin, anti-semijoin, quotient, …
An exercise

- Names of students in Lisa’s classes

Another exercise

- CID’s of the courses that Lisa is NOT taking

A trickier exercise

- Who has the highest GPA?
Monotone operators

Add more rows to the input...

- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain “correct” when more rows are added to the input
 - Formally, for a monotone operator RelOp:
 \[R \subseteq R' \implies \text{RelOp}(R) \subseteq \text{RelOp}(R') \]

Classification of relational operators

- Selection: \(\sigma_p R \)
- Projection: \(\pi_{i_j} R \)
- Cross product: \(R \times S \)
- Join: \(R \bowtie S \)
- Natural join: \(R \bowtie S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Intersection: \(R \cap S \)

Why is “−” needed for highest GPA?

- Composition of monotone operators produces a monotone query
 - Old output rows remain “correct” when more rows are added to the input
- Highest-GPA query is
Why do we need core operator X?

- Difference
- Cross product
- Union
- Selection? Projection?
 - Homework problem 😊

Why is r.a. a good query language?

- Simple
 - A small set of core operators whose semantics are easy to grasp
- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators do look somewhat "procedural"
- Complete?
 - With respect to what?

Relational calculus

- \{ s.SID \mid s \in \text{Student} \land \neg(\exists s' \in \text{Student} : s.GPA < s'.GPA) \}, or
 \{ s.SID \mid s \in \text{Student} \land (\forall s' \in \text{Student} : s.GPA \geq s'.GPA) \}

- Relational algebra = "safe" relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa
- Example of an unsafe relational calculus query
 - \{ s.name \mid \neg(\exists s \in \text{Student}) \}
 - Cannot evaluate this query just by looking at the database
Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation `Parent(parent, child)`, who are Bart's ancestors?
- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level
- Recursion is added to SQL nevertheless!