Announcements (Thurs. September 1)

- Please sign up for mailing list and database (IBM DB2) accounts on the sign-up sheet (now circulating)
- Homework #1 will be assigned next Tuesday
- Office hours: see also course Web page
 - Jun: TTH afternoon
 - Ming: MW late afternoon
- Book update
 - $101 (new) / $75.75 (used) from Duke bookstore
 - Available possibly tomorrow and definitely by next Tuesday
 - $86.15 (new, free shipping) from Amazon

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
 - Set-valued attributes not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are identical if they agree on all attributes
- Simplicity is a virtue!

Example

```latex
\begin{tabular}{|c|c|c|}
\hline
SID & Name & Age & GPA \\
\hline
142 & Bart & 10 & 2.3 \\
123 & Milhouse & 10 & 3.1 \\
857 & Lisa & 8 & 4.3 \\
456 & Ralph & 8 & 2.3 \\
\hline
\end{tabular}
```

```latex
\begin{tabular}{|c|c|}
\hline
CID & Title \\
\hline
CPS116 & Intro. to Database Systems \\
CPS130 & Analysis of Algorithms \\
CPS114 & Computer Networks \\
\hline
\end{tabular}
```

```latex
\begin{tabular}{|c|c|}
\hline
SID & CID \\
\hline
142 & CPS116 \\
142 & CPS114 \\
123 & CPS116 \\
857 & CPS116 \\
857 & CPS130 \\
456 & CPS114 \\
\hline
\end{tabular}
```

Ordering of rows doesn’t matter (even though the output is always in some order)

Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to type and objects of type in a programming language

Example

- Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)
- Instance
 - \{ (142, Barr, 10, 2.3), (123, Milhouse, 10, 3.1), ... \}
 - \{ (CPS116, Intro. to Database Systems), ... \}
 - \{ (142, CPS116), (142, CPS114), ... \}
Relational algebra operators

A language for querying relational databases based on operators:

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection

- Input: a table \(R \)
- Notation: \(\sigma_p R \)
- \(p \) is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as \(R \), but only rows of \(R \) that satisfy \(p \)

Selection example

- Students with GPA higher than 3.0
 \[\sigma_{\text{GPA} > 3.0} \text{Student} \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

More on selection

- Selection predicate in general can include any column of \(R \), constants, comparisons (\(=, \leq, \text{etc.} \)), and Boolean connectives (\(\land: \text{and}, \lor: \text{or}, \text{and} \neg: \text{not} \))
- Example: straight A students under 18 or over 21
 \[\sigma_{\text{GPA} \geq 4.0 \land (\text{age} < 18 \lor \text{age} > 21)} \text{Student} \]
- But you must be able to evaluate the predicate over a single row of the input table
- Example: student with the highest GPA
 \[\sigma_{\text{GPA} = \text{all GPA in Student table}} \text{Student} \]

Projection

- Input: a table \(R \)
- Notation: \(\pi_L R \)
- \(L \) is a list of columns in \(R \)
- Purpose: select columns to output
- Output: same rows, but only the columns in \(L \)

Projection example

- ID’s and names of all students
 \(\pi_{\text{SID, name}} \text{Student} \)

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

\[\pi_{\text{name}} \text{Student} \]

\[\pi_{\text{age}} \text{Student} \]

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

- \(\text{Student} \times \text{Enroll} \)

A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows)
- That means cross product is commutative, i.e., \(R \times S = S \times R \) for any \(R \) and \(S \)

Derived operator: join

- Input: two tables \(R \) and \(S \)
- Notation: \(R \leftarrow p S \)
 - \(p \) is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) if \(r \) and \(s \) satisfy \(p \)
- Shorthand for \(\sigma_p (R \times S) \)

Join example

- Info about students, plus CID’s of their courses

Use \text{table_name}.\text{column_name} syntax to disambiguate identically named columns from different input tables
Derived operator: natural join
- Input: two tables R and S
- Notation: $R \bowtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for $\pi_{L}(\pi_{p}(R \bowtie S))$, where
 - p equates all attributes common to R and S
 - L is the union of all attributes from R and S, with
duplicate attributes removed

Natural join example
- $\text{Student} \bowtie \text{Enroll} = \pi_{\text{ID, name, age, GPA, CID}}(\text{Student, SID} = \text{Enroll.SID, Enroll})$

Union
- Input: two tables R and S
- Notation: $R \cup S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with
duplicate rows eliminated

Difference
- Input: two tables R and S
- Notation: $R - S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not found in S

Derived operator: intersection
- Input: two tables R and S
- Notation: $R \cap S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S
- Shorthand for $R - (R - S)$
- Also equivalent to $S - (S - R)$
- And to $R \setminus S$

Renaming
- Input: a table R
- Notation: $\rho_{S}R$, or $\rho_{S(A_{1}, A_{2}, \ldots)}R$
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as R
- Used to
 - Avoid confusion caused by identical column names
 - Create identical columns names for natural joins
Renaming example

- SID’s of students who take at least two courses

\[\pi_{\text{sid}}(\text{Enroll}, \text{Enroll}) \]

Expression tree syntax:

\[\rho_{\text{Enroll}(\text{sid1}, \text{cid1})} \]

\[\rho_{\text{Enroll}(\text{sid2}, \text{cid2})} \]

\[\text{Enroll} \]

Summary of core operators

- Selection: \(\sigma_p R \)
- Projection: \(\pi_L R \)
- Cross product: \(R \times S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Renaming: \(\rho_{A_1, A_2, \ldots} R \)

- Does not really add to processing power

Summary of derived operators

- Join: \(R \bowtie S \)
- Natural join: \(R \bowtie S \)
- Intersection: \(R \cap S \)

- Many more
 - Semi-join, anti-semi-join, quotient, …

An exercise

- Names of students in Lisa’s classes

- Their names \(\pi_{\text{name}} \)

- Students in Lisa’s classes \(\pi_{\text{sid}} \)

- Lisa’s classes \(\pi_{\text{cid}} \)

- Enroll

Who’s Lisa?

\[\sigma_{\text{name}} = \text{“Lisa”} \]

Another exercise

- CID’s of the courses that Lisa is NOT taking

- All CID’s

- CID’s of the courses that Lisa IS taking

- Course

- Enroll

- \(\sigma_{\text{name}} = \text{“Lisa”} \)

- Student

A trickier exercise

- Who has the highest GPA?
 - Who does NOT have the highest GPA?
 - Whose GPA is lower than somebody else’s?

- \(\pi_{\text{sid}} \)
- \(\pi_{\text{student1.sid}} \)

- Student

- Student

- Student

- Student

- Student

- Student

A deeper question:

When (and why) is “−” needed?
Monotone operators

Add more rows to the input...

- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain "correct" when more rows are added to the input
 - Formally, for a monotone operator $RelOp$: $R \subseteq R'$ implies $RelOp(R) \subseteq RelOp(R')$

Classification of relational operators

- Selection: $\sigma_p R$
 - Monotone
- Projection: $\pi_L R$
 - Monotone
- Cross product: $R \times S$
 - Monotone
- Join: $R \bowtie S$
 - Monotone
- Natural join: $R \bowtie S$
 - Monotone
- Union: $R \cup S$
 - Monotone
- Difference: $R - S$
 - Monotone w.r.t. R; non-monotone w.r.t S
- Intersection: $R \cap S$
 - Monotone

Why is “−” needed for highest GPA?

- Composition of monotone operators produces a monotone query
 - Old output rows remain "correct" when more rows are added to the input
- Highest-GPA query is non-monotone
 - Current highest GPA is 4.1
 - Add another GPA 4.2
 - Old answer is invalidated
 - So it must use difference!

Why do we need core operator X?

- Difference
 - The only non-monotone operator
- Cross product
 - The only operator that adds columns
- Union
 - The only operator that allows you to add rows?
 - A more rigorous argument?
- Selection? Projection?
 - Homework problem ☺

Why is r.a. a good query language?

- Simple
 - A small set of core operators who semantics are easy to grasp
- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators do look somewhat "procedural"
- Complete?
 - With respect to what?

Relational calculus

- $\{ s.SID ~|~ s \in Student ~\land~ \neg(\exists s' \in Student: s.GPA < s'.GPA) \}$, or $\{ s.SID ~|~ s \in Student ~\land~ (\forall s' \in Student: s.GPA \geq s'.GPA) \}$
- Relational algebra = “safe” relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa

Example of an unsafe relational calculus query

- $\{ s.name ~|~ \neg(s \in Student) \}$
- Cannot evaluate this query just by looking at the database
Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation `Parent(parent, child)`, who are Bart’s ancestors?
- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level
- Recursion is added to SQL nevertheless!