Announcements (September 13)

- Homework #1 due this Thursday
- Course project assigned today
 - Choice of a “standard” or “open” course project
 - Two milestones (October 13 and November 10) and a final demo/report (December 6-13)

Motivation

- How do we tell if a design is bad, e.g., `StudentEnroll (SID, name, CID)`?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

```
X Y Z
a b c
x y f
```

Must be b
Could be anything

FD examples

Address ($street_address$, $city$, $state$, zip)

- $street_address, city, state \rightarrow zip$
- $zip \rightarrow city, state$
- $zip, state \rightarrow zip$?
- $zip \rightarrow state, zip$?

Keys redefined using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow \text{all (other) attributes of } R$
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}
- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1, A_2, \ldots$)
- Algorithm for computing the closure
 - Start with closure = Z
 - If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

`StudentGrade (SID, name, email, CID, grade)`

(Not a good design, and we will see why later)
Example of computing closure

- F includes:
 - $SID \rightarrow$ name, email
 - $email \rightarrow$ SID
 - $SID, CID \rightarrow$ grade

- $\{ CID, email \}^+ = ?$

- $email \rightarrow$ SID
 - Add SID; closure is now $\{ CID, email, SID \}$

- $SID \rightarrow$ name, email
 - Add name, email; closure is now $\{ CID, email, SID, name \}$

- $SID, CID \rightarrow$ grade
 - Add grade; closure is now all the attributes in StudentGrade

Using attribute closure

Given a relation R and set of FD's F

- Does another FD $X \rightarrow Y$ follow from F?
 - Compute X^+ with respect to F
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from F

- Is K a key of R?
 - Compute K^+ with respect to F
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
Using rules of FD’s

Given a relation R and set of FD’s \mathcal{F}
- Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Use the rules to come up with a proof
 - Example:
 - \mathcal{F} includes:
 - $SID \rightarrow name, email; email \rightarrow SID; SID, CID \rightarrow grade$
 - $CID, email \rightarrow grade$?
 - $email \rightarrow SID$ (given in \mathcal{F})
 - $CID, email \rightarrow CID, SID$ (augmentation)
 - $SID, CID \rightarrow grade$ (given in \mathcal{F})
 - $CID, email \rightarrow grade$ (transitivity)

Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c_1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

That a is always associated with b is recorded by multiple rows:
- redundancy, update anomaly, deletion anomaly

Example of redundancy

- StudentGrade ($SID, name, email, CID, grade$)
- $SID \rightarrow name, email$

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS110</td>
<td>B</td>
</tr>
<tr>
<td>14</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS116</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS114</td>
<td>C</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Decomposition

- Eliminates redundancy
- To get back to the original relation:

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B-</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td></td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
</tbody>
</table>

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B-</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td></td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
</tbody>
</table>

Bad decomposition

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
<td>B-</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>857</td>
<td>CPS116</td>
<td>A+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>856</td>
<td>CPS114</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lossless join decomposition

- Decompose relation \(R \) into relations \(S \) and \(T \)
 - \(\text{attrs}(R) = \text{atts}(S) \cup \text{atts}(T) \)
 - \(S = \pi_{\text{atts}(S)}(R) \)
 - \(T = \pi_{\text{atts}(T)}(R) \)
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that \(R = S \bowtie T \)
- Any decomposition gives \(R \subseteq S \bowtie T \) (why?)
 - A lossy decomposition is one with \(R \subset S \bowtie T \)

Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

No way to tell which is the original relation

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

- A relation \(R \) is in Boyce-Codd Normal Form if
 - For every non-trivial FD \(X \rightarrow Y \) in \(R \), \(X \) is a super key
 - That is, all FDs follow from “key \(\rightarrow \) other attributes”

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \)
- Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \), where \(Z \) contains all attributes of \(R \) that are in neither \(X \) nor \(Y \)
- Repeat until all relations are in BCNF

BCNF decomposition example

\[\text{StudentGrade (SID, name, email, CID, grade)} \]
\[\text{BCNF violation: SID \rightarrow name, email} \]

\[\text{Student (SID, name, email) BCNF} \]
\[\text{Grade (SID, CID, grade) BCNF} \]
Another example

\[\text{StudentGrade (SID, name, email, CID, grade)} \]

Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:

- Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Proof makes use of the fact that \(X \rightarrow Y \)

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s