Relational Database Design Theory
Part I

CPS 116
Introduction to Database Systems

Announcements (September 13)
- Homework #1 due this Thursday
- Course project assigned today
 - Choice of a “standard” or “open” course project
 - Two milestones (October 13 and November 10) and a final demo/report (December 6-13)

Motivation

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Bart</td>
<td>CPS116</td>
</tr>
<tr>
<td>95</td>
<td>Lisa</td>
<td>CPS116</td>
</tr>
<tr>
<td>89</td>
<td>Lisa</td>
<td>CPS110</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>2</td>
</tr>
</tbody>
</table>

- Must be b
- Could be anything

FD examples

Address (street address, city, state, zip)
- street address, city, state \rightarrow zip
- zip \rightarrow city, state
- zip, state \rightarrow zip?
 - This is a trivial FD
 - Trivial FD: LHS \supseteq RHS
- zip \rightarrow state, zip?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation \(R \) and a set of FD’s \(\mathcal{F} \)
- Does another FD follow from \(\mathcal{F} \)?
 - Are some of the FD’s in \(\mathcal{F} \) redundant (i.e., they follow from the others)?
- Is \(K \) a key of \(R \)?
 - What are all the keys of \(R \)?

Attribute closure

- Given \(R \), a set of FD’s \(\mathcal{F} \) that hold in \(R \), and a set of attributes \(Z \) in \(R \):
 - The closure of \(Z \) (denoted \(Z^+ \)) with respect to \(\mathcal{F} \) is the set of all attributes \(\{ A_1, A_2, \ldots \} \) functionally determined by \(Z \) (that is, \(Z \rightarrow A_1 A_2 \ldots \))
- Algorithm for computing the closure
 - Start with closure = \(Z \)
 - If \(X

A more complex example

- \(\text{StudentGrade} \) (\(\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade} \))
- \(\text{SID} \rightarrow \text{name, email} \)
- \(\text{email} \rightarrow \text{SID} \)
- \(\text{SID, CID} \rightarrow \text{grade} \)

(Not a good design, and we will see why later)

Example of computing closure

- \(\mathcal{F} \) includes:
 - \(\text{SID} \rightarrow \text{name, email} \)
 - \(\text{email} \rightarrow \text{SID} \)
 - \(\text{SID, CID} \rightarrow \text{grade} \)
- \(\{ \text{CID, email} \}^+ = ? \)
 - \(\text{email} \rightarrow \text{SID} \)
 - Add \(\text{SID} \); closure is now \(\{ \text{SID, email, SID} \} \)
 - \(\text{SID} \rightarrow \text{name, email} \)
 - Add \(\text{name, email} \); closure is now \(\{ \text{CID, email, SID, name} \} \)
 - \(\text{SID, CID} \rightarrow \text{grade} \)
 - Add \(\text{grade} \); closure is now all the attributes in \(\text{StudentGrade} \)

Using attribute closure

- Given a relation \(R \) and set of FD’s \(\mathcal{F} \)
 - Does another FD \(X \rightarrow Y \) follow from \(\mathcal{F} \)?
 - Compute \(X^+ \) with respect to \(\mathcal{F} \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follow from \(\mathcal{F} \)
 - Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(\mathcal{F} \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
Using rules of FD’s

Given a relation \(R \) and set of FD’s \(F \):
- Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Use the rules to come up with a proof
 - Example:
 - \(F \) includes:
 - \(SID \rightarrow name, email \rightarrow SID, SID, CID \rightarrow grade \)
 - \(CID, email \rightarrow grade \)
 - email \(\rightarrow \) SID (given in \(F \))
 - \(CID, email \rightarrow CID, SID \) (augmentation)
 - \(SID, CID \rightarrow grade \) (given in \(F \))
 - \(CID, email \rightarrow grade \) (transitivity)

Non-key FD’s
- Consider a non-trivial FD \(X \rightarrow Y \) where \(X \) is not a super key
 - Since \(X \) is not a super key, there are some attributes (say \(Z \)) that are not functionally determined by \(X \)

Example of redundancy
- \(StudentGrade (SID, name, email, CID, grade) \)
- \(SID \rightarrow name, email \)

Unnecessary decomposition
- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now \(SID \) is stored twice!

Decomposition
- Eliminates redundancy
- To get back to the original relation: \(\subseteq \)

Bad decomposition
- Association between \(CID \) and grade is lost
- Join returns more rows than the original relation
Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(S)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- $\text{StudentGrade}(\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
 - BCNF violation: $\text{SID} \rightarrow \text{name}, \text{email}$
- $\text{Student}(\text{SID}, \text{name}, \text{email})$
 - BCNF
- $\text{Grade}(\text{SID}, \text{CID}, \text{grade})$
 - BCNF
Another example

\[\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})\]

BCNF violation: \(\text{email} \rightarrow \text{SID}\)

\[\text{StudentID} (\text{email}, \text{SID})\]

StudentID is BCNF

\[\text{StudentGrade'} (\text{email}, \text{name}, \text{CID}, \text{grade})\]

BCNF violation: \(\text{email} \rightarrow \text{name}\)

\[\text{StudentName} (\text{email}, \text{name})\]

BCNF

\[\text{Grade} (\text{email}, \text{CID}, \text{grade})\]

BCNF

Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y\) in \(R\) where \(X\) is not a super key of \(R\), need to prove:

\(\checkmark\) Anything we project always comes back in the join:

\[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)\]

\(\checkmark\) Sure; and it doesn’t depend on the FD

\(\checkmark\) Anything that comes back in the join must be in the original relation:

\[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)\]

\(\checkmark\) Proof makes use of the fact that \(X \rightarrow Y\)

Recap

\(\checkmark\) Functional dependencies: a generalization of the key concept

\(\checkmark\) Non-key functional dependencies: a source of redundancy

\(\checkmark\) BCNF decomposition: a method for removing redundancies

\(\checkmark\) BCNF decomposition is a lossless join decomposition

\(\checkmark\) BCNF: schema in this normal form has no redundancy due to FD’s