Announcements (September 29)
- Homework #2 due today
- Sample solution available next Tuesday
- Homework #1 graded
- Please verify your score on Blackboard
- See me or Ming if you have further questions
- Sample midterm (from last year) available
- Solution available next Tuesday
- Midterm in class next Thursday
 - Format similar to the sample midterm
 - Covers everything up to next Tuesday’s lecture
 - Emphasizes on materials exercised in homeworks

Motivation
- Pros and cons of SQL
 - Very high-level, possible to optimize
 - Not intended for general-purpose computation
- Solutions
 - Augment SQL with constructs from general-purpose programming languages (SQL/PSM)
 - Use SQL together with general-purpose programming languages (JDBC, embedded SQL, etc.)

Impedance mismatch and a solution
- SQL operates on a set of records at a time
- Typical low-level general-purpose programming languages operates on one record at a time
 - Solution: cursor
 - Open (a table or a result table): position the cursor just before the first row
 - Get next: move the cursor to the next row and return that row; raise a flag if there is no such row
 - Close: clean up and release DBMS resources
 - Found in virtually every database language/API (with slightly different syntaxes)
 - Some support more cursor positioning and movement options, modification at the current cursor position (analogous to the view update problem), etc.

Augmenting SQL: SQL/PSM
- PSM = Persistent Stored Modules
- CREATE PROCEDURE proc_name (parameter_declarations)
 local_declarations
 procedure_body;
- CREATE FUNCTION func_name (parameter_declarations)
 RETURNS return_type
 local_declarations
 procedure_body;
- CALL proc_name (parameters);
- Inside procedure body:
 SET variable = CALL func_name (parameters);

SQL/PSM example
CREATE FUNCTION SetMaxGPA(IN newMaxGPA FLOAT)
RETURNS INT
BEGIN
 DECLARE rowsUpdated INT DEFAULT 0;
 DECLARE thisGPA FLOAT;
 DECLARE studentCursor CURSOR FOR
 SELECT GPA FROM Student
 FOR UPDATE;
 DECLARE noMoreRows INT DEFAULT 0;
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET noMoreRows = 1;
 … (see next slide) …
 RETURN rowsUpdated;
END
SQL/PSM example continued

```sql
-- Fetch the first result row:
OPEN studentCursor;
-- Loop over all result rows:
WHILE notMoreRows <> 1 DO
  IF thisGPA > newMaxGPA THEN
    -- Enforce newMaxGPA:
    UPDATE Student SET Student.GPA = newMaxGPA
    WHERE CURRENT OF studentCursor;
  -- Update count:
  SET rowsUpdated = rowsUpdated + 1;
  END IF;
  -- Fetch the next result row:
  FETCH FROM studentCursor INTO thisGPA;
END WHILE;
CLOSE studentCursor;
```

Other SQL/PSM features

- Assignment using scalar query results
 - `SELECT INTO`
- Other loop constructs
 - `FOR, REPEAT UNTIL, LOOP`
- Flow control
 - `GOTO`
- Exceptions
 - `SIGNAL, RESIGNAL`

Interfacing SQL with another language

- **API approach**
 - SQL commands are sent to the DBMS at runtime
 - Examples: JDBC, ODBC (for C/C++/VB), Perl DBI
 - These API's are all based on the SQL/CLI (Call-Level Interface) standard
- **Embedded SQL approach**
 - SQL commands are embedded in application code
 - A precompiler checks these commands at compile-time and converts them into DBMS-specific API calls
 - Examples: embedded SQL for C/C++, SQLJ (for Java)

Example API: JDBC

- **JDBC (Java DataBase Connectivity)** is an API that allows a Java program to access databases

```java
// Use the JDBC package:
import java.sql.*;
...
public class ... {
  ...
  static {
    // Load the JDBC driver:
    Class.forName("COM.ibm.db2.jdbc.net.DB2Driver");
  }
  ...
}
```

Connections

```java
// Connection URL is a DBMS-specific string:
String url = "jdbc:db2://rack40.cs.duke.edu/dbcourse";
// Making a connection:
Connection con = DriverManager.getConnection(url);
...
// Closing a connection:
con.close();
...
```

Statements

```java
// Create an object for sending SQL statements:
Statement stmt = con.createStatement();
// Execute a query and get its results:
ResultSet rs = stmt.executeQuery("SELECT SID, name FROM Student");
// Work on the results:
...
// Execute a modification (returns the number of rows affected):
int rowsUpdated = stmt.executeUpdate("UPDATE Student SET name = 'Barney' WHERE SID = 142");
// Close the statement:
stmt.close();
...
```
Query results

```java
// Execute a query and get its results:
ResultSet rs =
    stmt.executeQuery("SELECT SID, name FROM Student");
// Loop through all result rows:
while (rs.next()) {
    // Get column values:
    int sid = rs.getInt(1);
    String name = rs.getString(2);
    // Work on sid and name:
    ...
} // Close the ResultSet:
rs.close();
```

Other ResultSet features

- Move the cursor (pointing to the current row) backwards and forwards, or position it anywhere within the ResultSet
- Update/delete the database row corresponding to the current result row
 - Analogous to the view update problem
- Insert a row into the database
 - Analogous to the view update problem

Prepared statements: motivation

```java
Statement stmt = con.createStatement();
for (int age=0; age<100; age+=10) {
    ResultSet rs = stmt.executeQuery
        ("SELECT AVG(GPA) FROM Student WHERE age >= \? AND age < \?\);
    // Work on the results:
    ...
} // Every time an SQL string is sent to the DBMS, the DBMS must perform parsing, semantic analysis, optimization, compilation, and then finally execution
// These costs are incurred 10 times in the above example, even though all strings are essentially the same query (with different parameter values)
```

Prepared statements: syntax

```java
// Prepare the statement, using ? as placeholders for actual parameters:
PreparedStatement stmt = con.prepareStatement
    ("SELECT AVG(GPA) FROM Student WHERE age >= \? AND age < \?\);
for (int age=0; age<100; age+=10) {
    // Set actual parameter values:
    stmt.setInt(1, age);
    stmt.setInt(2, age+10);
    ResultSet rs = stmt.executeQuery();
    // Work on the results:
    ...
} // The DBMS performs parsing, semantic analysis, optimization, and compilation only once, when it prepares the statement
// At execution time, the DBMS only needs to check parameter types and validate the compiled execution plan
```

Transaction processing

```java
// Set isolation level for the current transaction
    con.setTransactionIsolationLevel();
// Where l is one of TRANSACTION_SERIALIZABLE (default), TRANSACTION_REPEATABILE_READ, TRANSACTION_READ_COMMITTED, and TRANSACTION_READ_UNCOMMITTED
// Set the transaction to be read-only or read/write (default)
    con.setReadOnly(true|false);
// Turn on/off AUTOCOMMIT (commits every single statement)
    con.setAutoCommit(true|false);
// Commit/rollback the current transaction (when AUTOCOMMIT is off)
    con.commit();
    con.rollback();
```

Odds and ends of JDBC

- Most methods can throw SQLException
 - Make sure your code catches them
 - getSQLState() returns the standard SQL error code
 - getMessage() returns the error message
- Methods for examining metadata in databases
- Methods to retrieve the value of a column for all result rows into an array without calling ResultSet.next() in a loop
- Methods to construct and execute a batch of SQL statements together
 ...

```java
Statement stmt = con.createStatement();
for (int age=0; age<100; age+=10) {
    ResultSet rs = stmt.executeQuery
        ("SELECT AVG(GPA) FROM Student WHERE age >= \? AND age < \?\);
    // Work on the results:
    ...
} // These costs are incurred 10 times in the above example, even though all strings are essentially the same query (with different parameter values)
```
JDBC drivers – Types I, II

- **Type I (bridge):** translate JDBC calls to a standard API not native to the DBMS (e.g., JDBC-ODBC bridge)
 - Driver is easy to build using existing standard API’s
 - Extra layer of API adds overhead
- **Type II (native API, partly Java):** translates JDBC calls to DBMS-specific client API calls
 - DBMS-specific client library needs to be installed on each client
 - Good performance

JDBC drivers – Types III, IV

- **Type III (network bridge):** sends JDBC requests to a middleware server which in turn communicates with a database
 - Client JDBC driver is completely Java, easy to build, and does not need to be DBMS-specific
 - Middleware adds translation overhead
- **Type IV (native protocol, full Java):** converts JDBC requests directly to native network protocol of the DBMS
 - Client JDBC driver is completely Java but is also DBMS-specific
 - Good performance

Embedded C example

```c
/* Declare variables to be "shared" between the application and the DBMS: */
EXEC SQL BEGIN DECLARE SECTION;
  int thisSID;
  float thisGPA;
EXEC SQL END DECLARE SECTION;

/* Declare a cursor: */
EXEC SQL DECLARE CPS116Student CURSOR FOR
  SELECT SID, GPA FROM Student
  WHERE SID IN
    (SELECT SID FROM Enroll WHERE CID = 'CPS116')
  FOR UPDATE;
...
```

Embedded C example continued

```c
/* Open the cursor: */
EXEC SQL OPEN CPS116Student;
/* Specify exit condition: */
EXEC SQL WHENEVER NOT FOUND DO break;
/* Loop through result rows: */
while (1) {
  /* Get column values for the current row: */
  EXEC SQL FETCH CPS116Student INTO :thisSID, :thisGPA;
  printf("SID %d: current GPA is %f\n", thisSID, thisGPA);
  /* Update GPA: */
  printf("Enter new GPA: ");
  scanf("%f", &thisGPA);
  EXEC SQL UPDATE Student SET GPA = :thisGPA
    WHERE CURRENT OF CPS116Student;
}
/* Close the cursor: */
EXEC SQL CLOSE CPS116Student;
```

Pros and cons of embedded SQL

- **Pros**
 - More compile-time checking (syntax, type, schema, …)
 - Code could be more efficient (if the embedded SQL statements do not need to be checked and recompiled at run-time)
- **Cons**
 - DBMS-specific
 - Vendors have different precompilers which translate code into different native API’s
 - Application executable is not portable (although code is)
 - Application cannot talk to different DBMS at the same time

Pros and cons of augmenting SQL

- **Cons**
 - Already too many programming languages
 - SQL is already too big
 - General-purpose programming constructs complicate optimization, and make it difficult to tell if code running inside the DBMS is safe
 - At some point, one must recognize that SQL and the DBMS engine are not for everything!
- **Pros**
 - More sophisticated stored procedures and triggers
 - More application logic can be pushed closer to data