SQL: Recursion

CPS 116
Introduction to Database Systems

Announcements (October 4)

- Midterm this Thursday in class
 - Format similar to the sample midterm; covers everything up to next Tuesday’s lecture; emphasizes on materials in homeworks
- Midterm review this Tuesday 7-8pm in Room D344
 - For those of you who cannot attend, Ming will make notes (some in hardcopies) from the session available during office hours
- Available: solutions to Homework #2 and sample midterm
 - Handouts you missed can be found online or in the handout box outside my office (D327)
- Watch for email from Ming regarding graded Homework #2 (hopefully you will get them back on Wednesday)
- Project milestone #1 due next Thursday

A motivating example

Example: find Bart’s ancestors

"Ancestor" has a recursive definition

- X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor
Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.
    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```
 - But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
 - WITH clause
 - Implemented in DB2 (called common table expressions)

Ancestor query in SQL3

```sql
WITH Ancestor(anc, desc) AS
    ((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
```

How do we compute such a recursive query?

Fixed point of a function

- If $f : T \rightarrow T$ is a function from a type T to itself, a fixed point of f is a value x such that $f(x) = x$
- Example: What is the fixed point of $f(x) = x/2$?
 - 0, because $f(0) = 0/2 = 0$
- To compute a fixed point of f
 - Start with a “seed”: $x \leftarrow x_0$
 - Compute $f(x)$
 - If $f(x) = x$, stop; x is fixed point of f
 - Otherwise, $x \leftarrow f(x)$; repeat
- Example: compute the fixed point of $f(x) = x/2$
 - With seed 1: $1, 1/2, 1/4, 1/8, 1/16, \ldots \rightarrow 0$
Fixed point of a query

- A query \(q \) is just a function that maps an input table to an output table, so a fixed point of \(q \) is a table \(T \) such that \(q(T) = T \).
- To compute fixed point of \(q \):
 - Start with an empty table: \(T \leftarrow \emptyset \).
 - Evaluate \(q \) over \(T \):
 - If the result is identical to \(T \), stop; \(T \) is a fixed point.
 - Otherwise, let \(T \) be the new result; repeat.

Starting from \(\emptyset \) produces the unique minimal fixed point (assuming \(q \) is monotone).

Finding ancestors

WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
 UNION
(SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))

Think of it as \(\text{Ancestor} = q(\text{Ancestor}) \).

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships.
- In the first step, we deduce that parents and children form ancestor-descendent relationships.
- In each subsequent step, we use the facts deduced in previous steps to get more ancestor-descendent relationships.
- We stop when no new facts can be proven.
Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear:
  ```sql
  WITH Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent)
   UNION
   (SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc))
  ```
- Linear:
  ```sql
  WITH Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent)
   UNION
   (SELECT anc, child
    FROM Ancestor, Parent
    WHERE desc = parent))
  ```

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated Ancestor rows with Parent
 - For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows
- Non-linear recursion may take fewer steps to converge
 - Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps

Mutual recursion example

- Table `Natural (n)` contains 1, 2, ..., 100
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an odd number
- Linear recursion is easier to implement
  ```sql
  WITH Even(n) AS
  (SELECT n FROM Natural
   WHERE n = ANY(SELECT n+1 FROM Odd)),
  Odd(n) AS
  ((SELECT n FROM Natural WHERE n = 1)
   UNION
   (SELECT n FROM Natural
    WHERE n = ANY(SELECT n+1 FROM Even)))
  ```
Operational semantics of WITH

- WITH \(R_1 \) AS \(Q_1 \), ..., \(R_s \) AS \(Q_s \)
 - \(Q_1, \ldots, Q_s \) may refer to \(R_1, \ldots, R_s \)
- Operational semantics
 1. \(R_i \leftarrow \emptyset \), ..., \(R_s \leftarrow \emptyset \)
 2. Evaluate \(Q_1, \ldots, Q_s \) using the current contents of \(R_1, \ldots, R_s \):
 \(R_i^{\text{new}} \leftarrow Q_i \), ..., \(R_s^{\text{new}} \leftarrow Q_s \)
 3. If \(R_i^{\text{new}} \neq R_i \) for any \(i \)
 3.1. \(R_i \leftarrow R_i^{\text{new}} \), ..., \(R_s \leftarrow R_s^{\text{new}} \)
 3.2. Go to 2.
 4. Compute \(Q \) using the current contents of \(R_1, \ldots, R_s \) and output the result

Computing mutual recursion

WITH Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
Odd(n) AS
(SELECT n FROM Natural
WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even))

- \(\text{Even} = \emptyset \), \(\text{Odd} = \emptyset \)
- \(\text{Even} = \emptyset \), \(\text{Odd} = \{1\} \)
- \(\text{Even} = \{2\} \), \(\text{Odd} = \{1\} \)
- \(\text{Even} = \{2, 4\} \), \(\text{Odd} = \{1, 3\} \)
- \(\text{Even} = \{2, 4\} \), \(\text{Odd} = \{1, 3, 5\} \)
- \(\ldots \)

Fixed points are not unique

WITH Ancestor(anc, desc) AS
(SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

- There may be many other fixed points
- But if \(q \) is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \(\emptyset \)
- Thus the unique minimal fixed point is the "natural" answer to the query

Note that the bogus tuple reinforces itself!
Mixing negation with recursion

- If q is non-monotone
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—so which one is the right answer?
- Example: reward students with GPA higher than 3.9
 - Those not on the Dean's List should get a scholarship
 - Those without scholarships should be on the Dean's List
 - WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
 - DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Fixed-point iteration does not converge

WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Student

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>999</td>
<td>Jessica</td>
<td>10</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Scholarship DeansList Scholarship DeansList

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiple minimal fixed points

WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Student

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>999</td>
<td>Jessica</td>
<td>10</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Scholarship DeansList Scholarship DeansList

<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WITH
 - A directed edge \(R \rightarrow S \) if \(R \) is defined in terms of \(S \)
 - Label the directed edge “–” if the query defining \(R \) is not monotone with respect to \(S \)
- Legal SQL3 recursion: no cycle containing a “–” edge
- Called stratified negation
- Bad mix: a cycle with at least one edge labeled “–”

![Dependency Graph](image)

Legal SQL3 recursion: no cycle containing a “–” edge

Stratified negation example

- Find pairs of persons with no common ancestors

```
WITH Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent) UNION
   (SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc)),
  Person(person) AS
  ((SELECT parent FROM Parent) UNION
   (SELECT child FROM Parent)),
  NoCommonAnc(person1, person2) AS
  ((SELECT p1.person, p2.person
    FROM Person p1, Person p2
    WHERE p1.person <> p2.person)
   EXCEPT
   (SELECT a1.desc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.anc = a2.anc))
SELECT * FROM NoCommonAnc;
```

Evaluating stratified negation

- The stratum of a node \(R \) is the maximum number of “–” edges on any path from \(R \) in the dependency graph
 - \(Ancestor \): stratum 0
 - \(Person \): stratum 0
 - \(NoCommonAnc \): stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: \(Ancestor \) and \(Person \)
 - Stratum 1: \(NoCommonAnc \)
- Intuitively, there is no negation within each stratum
Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \(\emptyset \)
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)