SQL: Recursion

CPS 116
Introduction to Database Systems

Announcements (October 4)

- Midterm this Thursday in class
 - Format similar to the sample midterm; covers everything up to the
 lecture today; emphasis on materials in homeworks
 - Midterm review this Tuesday 7-8pm in Room D344
 - For those of you who cannot attend, Ming will make notes (some
 in hardcopies) from the session available during office hours
 - Available: solutions to Homework #2 and sample midterm
 - Handouts you missed can be found online or in the handout box
 outside my office (D327)
 - Watch for email from Ming regarding graded Homework
 #2 (hopefully you will get them back on Wednesday)
 - Project milestone #1 due next Thursday

A motivating example

Example: find Bart’s ancestors

"Ancestor" has a recursive definition

- X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor

Parent (parent, child)

- Homer Bart
- Homer Lisa
- Marge Bart
- Marge Lisa
- Abe Homer
 - Ape Abe

- Bart Lisa
 - Marge Homer

Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.
 SELECT p1.parent AS grandparent
 FROM Parent p1, Parent p2
 WHERE p1.child = p2.parent
 AND p2.child = ‘Bart’;
 - But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
 - WITH clause
 - Implemented in DB2 (called common table expressions)

Ancestor query in SQL3

WITH Ancestor(anc, desc) AS
 (SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)

SELECT anc
FROM Ancestor
WHERE desc = ‘Bart’;

How do we compute such a recursive query?

Fixed point of a function

- If f: T → T is a function from a type T to itself, a
 fixed point of f is a value x such that f(x) = x
- Example: What is the fixed point of f(x) = x / 2?
 - 0, because f(0) = 0 / 2 = 0
- To compute a fixed point of f
 - Start with a “seed”: x ← x₀
 - Compute f(x)
 - If f(x) = x, stop; x is fixed point of f
 - Otherwise, x ← f(x); repeat
- Example: compute the fixed point of f(x) = x / 2
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0
Fixed point of a query

- A query \(q \) is just a function that maps an input table to an output table, so a fixed point of \(q \) is a table \(T \) such that \(q(T) = T \).
- To compute fixed point of \(q \):
 - Start with an empty table: \(T \leftarrow \emptyset \)
 - Evaluate \(q \) over \(T \)
 - If the result is identical to \(T \), stop; \(T \) is a fixed point
 - Otherwise, let \(T \) be the new result; repeat
 - Starting from \(\emptyset \) produces the unique minimal fixed point (assuming \(q \) is monotone).

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships.
- In the first step, we deduce that parents and children form ancestor-descendent relationships.
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships.
- We stop when no new facts can be proven.

Linear vs. non-linear recursion

- Linear recursion is easier to implement:
 - For linear recursion, just keep joining newly generated \(\text{Ancestor} \) rows with \(\text{Parent} \).
 - For non-linear recursion, need to join newly generated \(\text{Ancestor} \) rows with all existing \(\text{Ancestor} \) rows.
- Non-linear recursion may take fewer steps to converge:
 - Example: \(a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \)
 - Linear recursion takes 4 steps.
 - Non-linear recursion takes 3 steps.

Finding ancestors

WITH Ancestor(anc, desc) AS

((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))

Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself.
- Non-linear:
 - \(\text{WITH Ancestor}(\text{anc}, \text{desc}) \text{ AS}
 \)\n \(((\text{SELECT parent, child FROM Parent})
 \)\n \(\text{UNION}
 \)\n \((\text{SELECT a1.anc, a2.desc}
 \)\n \(\text{FROM Ancestor a1, Ancestor a2}
 \)\n \(\text{WHERE a1.desc = a2.anc))
 \)
- Linear:
 - \(\text{WITH Ancestor}(\text{anc}, \text{desc}) \text{ AS}
 \)\n \(((\text{SELECT parent, child FROM Parent})
 \)\n \(\text{UNION}
 \)\n \((\text{SELECT anc, child}
 \)\n \(\text{FROM Ancestor, Parent}
 \)\n \(\text{WHERE desc = parent))
 \)

Mutual recursion example

- \(\text{WITH Natural}(n) \text{ contains 1, 2, \ldots, 100}
 \)
- Which numbers are even/odd?
 - An odd number plus 1 is an even number.
 - An even number plus 1 is an odd number.
 - 1 is an odd number.

WITH Even(n) AS

((SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
 Odd(n) AS
 ((SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even))))
Operational semantics of WITH

- WITH \(R_1 \) AS \(Q_1 \), ..., \(R_n \) AS \(Q_n \);
 - \(Q_1 \), ..., \(Q_n \) may refer to \(R_1 \), ..., \(R_n \)
- Operational semantics
 1. \(R_i \leftarrow \emptyset \), ..., \(R_n \leftarrow \emptyset \)
 2. Evaluate \(Q_1 \), ..., \(Q_n \) using the current contents of \(R_1 \), ..., \(R_n \); \(R_i^{\text{new}} \leftarrow Q_i \), ..., \(R_n^{\text{new}} \leftarrow Q_n \)
 3. If \(R_i^{\text{new}} \neq R_i \) for any \(i \)
 3.1. \(R_1 \leftarrow R_1^{\text{new}}, ..., R_n \leftarrow R_n^{\text{new}} \)
 3.2. Go to 2.
 4. Compute \(Q \) using the current contents of \(R_1 \), ..., \(R_n \) and output the result.

Computing mutual recursion

WITH Even(n) AS (SELECT n FROM Natural WHERE n = ANY(SELECT n+1 FROM Odd)),
Odd(n) AS (SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural WHERE n = ANY(SELECT n+1 FROM Even))

- Even = \(\emptyset \), Odd = \(\emptyset \)
- Even = \(\emptyset \), Odd = \(\{1\} \)
- Even = \(\{2\} \), Odd = \(\{1\} \)
- Even = \(\{2\} \), Odd = \(\{1, 3\} \)
- Even = \(\{2, 4\} \), Odd = \(\{1, 3\} \)
- Even = \(\{2, 4\} \), Odd = \(\{1, 3, 5\} \)
- ...

Fixed points are not unique

WITH Ancestor(anc, desc) AS ((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))

- There may be many other fixed points
- But if \(g \) is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \(\emptyset \)
 - Thus the unique minimal fixed point is the "natural" answer to the query

Fixed-point iteration does not converge

WITH Scholarship(SID) AS (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

- Multiple minimal fixed points

Mixing negation with recursion

- If \(g \) is non-monotone
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—so which one is the right answer?
- Example: reward students with GPA higher than 3.9
 - Those not on the Dean's List should get a scholarship
 - Those without scholarships should be on the Dean's List
- WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

- Multiple minimal fixed points

Multiple minimal fixed points
Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in `WITH`
 - A directed edge $R \to S$ if R is defined in terms of S
 - Label the directed edge "—" if the query defining R is not monotone with respect to S
- Legal SQL3 recursion: no cycle containing a "—" edge
 - Called stratified negation
- Bad mix: a cycle with at least one edge labeled "—"

![Dependency Graph]

Stratified negation example

- Find pairs of persons with no common ancestors

```sql
WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)),
 Person(person) AS
((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),
 NoCommonAnc(person1, person2) AS
((SELECT p1.person, p2.person FROM Person p1, Person p2
 WHERE p1.person <> p2.person)
 EXCEPT
 (SELECT a1.desc, a2.desc FROM Ancestor a1, Ancestor a2
 WHERE a1.anc = a2.anc)),
 SELECT * FROM NoCommonAnc;
```

Evaluating stratified negation

- The stratum of a node R is the maximum number of "—" edges on any path from R in the dependency graph
 - `Ancestor`: stratum 0
 - `Person`: stratum 0
 - `NoCommonAnc`: stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: `Ancestor` and `Person`
 - Stratum 1: `NoCommonAnc`
- Intuitively, there is no negation within each stratum

Summary

- SQL3 `WITH` recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)