Query Optimization

CPS 116
Introduction to Database Systems

Announcements (November 22)

- Thanksgiving break this Thursday; no class
- Homework #4 (last one and short) will be assigned after Thanksgiving break
- Project milestone #2 comments have been sent out

Query optimization

- One logical plan \rightarrow “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do
Plan enumeration in relational algebra

- Apply relational algebra equivalences
 - Join reordering: × and ⊙ are associative and commutative (except column ordering, but that is unimportant)

\[
\begin{align*}
R \times S &= T \\
S \times R &= T \\
R \times T &= \cdots
\end{align*}
\]

More relational algebra equivalences

- Convert \(\sigma_p \) to/from \(\sigma_{\neg p} \): \(\sigma_p(R \times S) = R \bowtie_{\neg p} S \)
- Merge/split \(\sigma \)'s: \(\sigma_p(R) = \sigma_{p_1 \land p_2} R \)
- Merge/split \(\pi \)'s: \(\pi_L(R \times S) = \pi_{L_1} R \), where \(L_1 \subseteq L_2 \)
- Push down/pull up \(\sigma \): \(\sigma_{p \land \neg p
abla p}(R \bowtie_{\neg p} S) = (\sigma_p R \bowtie_{\neg p \lor \neg p} \neg p S) \), where
 - \(p \) is a predicate involving only \(R \) columns
 - \(\neg p \) is a predicate involving only \(S \) columns
 - \(\neg p \) and \(\neg p \) are predicates involving both \(R \) and \(S \) columns
- Push down \(\pi \): \(\pi_L(\sigma_p R) = \pi_{L_1}(\sigma_{p \land \neg p} L_2 R) \), where
 - \(L' \) is the set of columns referenced by \(p \) that are not in \(L \)
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

\[\begin{align*}
&\text{Query: } \pi_{\text{title}} \sigma_{\text{Student.name} = \text{"Bart"} \land \text{Student.SID} = \text{Enroll.SID \land Enroll.CID} = \text{Course.CID}}

&\text{Push down } \sigma:
\end{align*}\]
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why?
 - Why not?
- Join smaller relations first, and avoid cross product
 - Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested "blocks"
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';

- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;

- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));

- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones

- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

- Physical plan example:
 - PROJECT (title)
 - MERGE-JOIN (CID)
 - SCAN (Course)
 - SORT (CID)
 - SCAN (Enroll)
 - SCAN (Student)
 - FILTER (name = "Bart")
 - SORT (SID)
 - SCAN (Enroll)

- We have: cost estimation for each operator
 - Example: \(\text{SORT}(\text{CID}) \) takes \(2 \times B(\text{input}) \)
 - But what is \(B(\text{input}) \)?
- We need: size of intermediate results

Selections with equality predicates

- \(Q: \sigma_{A = v} R \)
- Suppose the following information is available
 - Size of \(R \): \(|R|\)
 - Number of distinct \(A \) values in \(R \): \(|\pi_A R|\)
- Assumptions
 - Values of \(A \) are uniformly distributed in \(R \)
 - Values of \(v \) in \(Q \) are uniformly distributed over all \(R.A \) values
- \(|Q| \approx |R| / |\pi_A R|\)
 - Selectivity factor of \((A = v)\) is \(1 / |\pi_A R|\)

Conjunctive predicates

- \(Q: \sigma_{A = a \land B = v} R \)
- Additional assumptions
 - \((A = a)\) and \((B = v)\) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: \(A \) is the key
- \(|Q| \approx |R| / (|\pi_A R| \cdot |\pi_B R|)\)
 - Reduce total size by all selectivity factors
Negated and disjunctive predicates

\[Q: \sigma_{A \neq v} R \]

\[Q: \sigma_{A = u \lor B = v} R \]

\[|Q| \approx |R| \cdot (1/|\pi_A R| + 1/|\pi_B R|) \]

Range predicates

\[Q: \sigma_{A > v} R \]

- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3\)

- With more information
 - Largest \(RA\) value: high(\(RA\))
 - Smallest \(RA\) value: low(\(RA\))
 - \(|Q| \approx |R| \cdot (\text{high}(RA) - v) / (\text{high}(RA) - \text{low}(RA))\)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

\[Q: R(A, B) \bowtie S(A, C) \]

- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S| \) then \(\pi_A R \subseteq \pi_A S \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins

- \(|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|)\)
 - Selectivity factor of \(RA = S.A\) is \(1/\max(|\pi_A R|, |\pi_A S|)\)
Multiway equi-join

Q: R(A, B)⋈ S(B, C)⋈ T(C, D)

What is the number of distinct C values in the join of R and S?

Assumption: preservation of value sets

- A non-join attribute does not lose values from its set of possible values
- That is, if A is in R but not S, then \(\pi_A(R) \equiv \pi_A S \)
- Certainly not true in general
- But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont’d)

Q: R(A, B)⋈ S(B, C)⋈ T(C, D)

Start with the product of relation sizes

- \(|R| \cdot |S| \cdot |T|\)

Reduce the total size by the selectivity factor of each join predicate

- \(R.B = S.B: 1/\max(|\pi_R R|, |\pi_R S|)\)
- \(S.C = T.C: 1/\max(|\pi_S S|, |\pi_S T|)\)

\(|Q| \approx (|R| \cdot |S| \cdot |T|)/
\quad (\max(|\pi_R R|, |\pi_R S|) \cdot \max(|\pi_S S|, |\pi_S T|))

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 SELECT * FROM Student WHERE GPA > 3.9;
 SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms
Search for the best plan

- Huge search space
- "Bushy" plan example:

- Just considering different join orders, there are \((2n - 2)! / (n - 1)!\) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n\)
 - 30240 for \(n = 6\)
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because

- How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n\)?
 - Significantly fewer, but still lots—

A greedy algorithm

- \(S_1, \ldots, S_n\)
 - Say selections have been pushed down; i.e., \(S_j = \sigma p R_i\)
- Start with the pair \(S_j, S_j\) with the smallest estimated size for \(S_j \bowtie S_j\)
- Repeat until no relation is left:
 - Pick \(S_j\) from the remaining relations such that the join of \(S_j\) and the current result yields an intermediate result of the smallest size

Pick most efficient join method

Minimize expected size

Current subplan

Remaining relations to be joined
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

The need for “interesting order”

- Example: R(A, B) \bowtie S(A, C) \bowtie T(A, D)
- Best plan for R \bowtie S: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.).

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order
Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach