Query Optimization

CPS 116
Introduction to Database Systems

Announcements (November 22)
- Thanksgiving break this Thursday; no class
- Homework #4 (last one and short) will be assigned after Thanksgiving break
- Project milestone #2 comments have been sent out

Query optimization
- One logical plan → "best" physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the "best" one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Plan enumeration in relational algebra
- Apply relational algebra equivalences
 - Join reordering: × and ◦ are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences
- Convert \(\sigma_p \times \) to/from \(\bowtie_p \): \(\sigma_p (R \times S) = R \bowtie_p S \)
- Merge/split \(\sigma_p \): \(\sigma_p (\sigma_{p_1} R) = \sigma_{p_1 \wedge p_2} R \)
- Merge/split \(\pi_L \): \(\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1 \cap L_2} R \)
- Push down/pull up \(\sigma_p \):
 \[\sigma_{p \wedge p_1 \wedge p_2} (R \bowtie_p S) = (\sigma_{p_1} R) \bowtie_{p \wedge p_2} (\sigma_{p_2} S), \]
 - \(p_1 \) is a predicate involving only \(R \) columns
 - \(p_2 \) is a predicate involving only \(S \) columns
 - \(p \) and \(p_2 \) are predicates involving both \(R \) and \(S \) columns
- Push down \(\pi_L \): \(\pi_{L_1} (\sigma_p R) = \pi_{L_2} (\sigma_p (\pi_{L_1 \wedge L_2} R)), \)
 - \(L_1 \) is the set of columns referenced by \(p \) that are not in \(L \)
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example
- Convert \(\sigma_p \times \) to \(\bowtie_p \)
- Push down \(\sigma_p \)
- Convert \(\sigma_{p_1} \) to \(\bowtie_{p_1} \)

Diagram:
- Nodes represent tables
- Arrows show the join operations
- Labels show column names and conditions
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
- Wrong—consider two Bart’s, each taking two classes
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
- Right—assuming Student.SID is a key

Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%' AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';
- New subquery is inefficient (computes enrollment for all courses)
- Suppose a CPS class is empty?

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%' AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID AND min_enroll > DS.cnt;
- Finally, refine the outer query

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

\[
\text{PROJECT (rids)} \quad \text{MERGE-JOIN (GID)}
\]

\[
\text{SORT (GID)} \quad \text{MERGE-JOIN (GID)} \quad \text{SCAN (Course)}
\]

- We have: cost estimation for each operator
 - Example: \(\text{SORT}(\text{GID})\) takes \(2 \times B(\text{input})\)
 - But what is \(B(\text{input})\)?
- We need: size of intermediate results

Conjunctive predicates

\(Q: \sigma_A = a \text{ and } B = v\)

- Additional assumptions
 - \((A = a)\) and \((B = v)\) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: \(A\) is the key
 - \(|Q| \approx |R| / (|\pi_A R| \cdot |\pi_B R|)\)
 - Reduce total size by all selectivity factors

Selections with equality predicates

\(Q: \sigma_A = a \text{ or } B = v\)

- Suppose the following information is available
 - Size of \(R\): \(|R|\)
 - Number of distinct \(A\) values in \(R\): \(|\pi_A R|\)
- Assumptions
 - Values of \(A\) are uniformly distributed in \(R\)
 - Values of \(v\) in \(Q\) are uniformly distributed over all \(R.A\) values
- \(|Q| \approx |R| / |\pi_A R|\)
 - Selectivity factor of \((A = a)\) is \(1 / |\pi_A R|\)

Negated and disjunctive predicates

\(Q: \sigma_A \neq a \text{ or } B \neq v\)

- \(|Q| \approx |R| \cdot (1 - 1 / |\pi_A R|)\)
- Selectivity factor of \(\neg p\) is \((1 - \text{selectivity factor of } p)\)

Range predicates

\(Q: \sigma_A > R\)

- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1 / 3\)
- With more information
 - Largest \(R.A\) value: \(\text{high}(R.A)\)
 - Smallest \(R.A\) value: \(\text{low}(R.A)\)
 - \(|Q| \approx |R| \cdot (\text{high}(R.A) - v) / (\text{high}(R.A) - \text{low}(R.A))\)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

\(Q: R(A, B) \bowtie S(A, C)\)

- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S|\) then \(\pi_A R \subseteq \pi_A S\)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \(|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|)\)
- Selectivity factor of \(R.A = S.A\) is \(1 / \max(|\pi_A R|, |\pi_A S|)\)
Multiway equi-join

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A(R \bowtie S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms

Search for the best plan

- Huge search space
 - “Bushy” plan example:

A greedy algorithm

- Select the pair \(S_i, S_j \) with the smallest estimated size for \(S_i \bowtie S_j \)
- Repeat until no relation is left:
 - Pick \(S_k \) from the remaining relations such that the join of \(S_k \) and the current result yields an intermediate result of the smallest size
 - Pick most efficient join method
 - Minimize expected size
 - Current subplan
 - Remaining relations to be joined
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
 - Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach