Web Searching & Indexing

CPS 116
Introduction to Database Systems

Announcements (December 6)

- Homework #4 due on today (will be graded by this weekend)
- Course project demo
- Final exam on Tuesday, Dec. 13, 7-10pm
 - Again, open book, open notes
 - Focus on the second half of the course

Keyword search

What are the documents containing both "database" and "search"?
Keywords × documents

Inverted lists: store the matrix by rows
Signature files: store the matrix by columns

Inverted lists

- Store the matrix by rows
- For each keyword, store an inverted list
 - *(keyword, doc-id-list)*
 - *("database", \{3, 7, 142, 857, \})
 - *("search", \{3, 9, 192, 512, \})*
 - It helps to sort *doc-id-list* (why?)
- Vocabulary index on keywords
 - B*-tree or hash-based

How large is an inverted list index?

Using inverted lists

- Documents containing "database"
 - Use the vocabulary index to find the inverted list for "database"
 - Return documents in the inverted list
- Documents containing "database" AND "search"

OR? NOT?
What are “all” the keywords?

- All sequences of letters (up to a given length)?
 - … that actually appear in documents!
- All words in English?
- Plus all phrases?
 - Alternative: approximate phrase search by proximity
- Minus all stop words
 - They appear in nearly every document, e.g., a, of, the, it
 - Not useful in search
- Combine words with common stems
 - Example: database, databases
 - They can be treated as the same for the purpose of search

Frequency and proximity

- Frequency
 - \(\text{keyword}, \{(\text{doc-id}, \text{number-of-occurrences}),\]
 \[(\text{doc-id}, \text{number-of-occurrences}),\]
 - \(\ldots\)\}\

- Proximity (and frequency)
 - \(\text{keyword}, \{(\text{doc-id, position-of-occurrence}),\]
 \[\text{position-of-occurrence},\]
 - \(\ldots\}\)
 - \(\ldots\})\}
 - When doing AND, check for positions that are near

Signature files

- Store the matrix by columns and compress them
- For each document, store a \(w\)-bit signature
- Each word is hashed into a \(w\)-bit value, with only \(s < w\) bits turned on
- Signature is computed by taking the bit-wise OR of the hash values of all words on the document

\[
\begin{align*}
\text{hash(“database”)} &= 0110 \\
\text{hash(“dog”)} &= 1100 \\
\text{hash(“cat”)} &= 0010
\end{align*}
\]

\(\text{doc}_1\) contains “database”: 0110
\(\text{doc}_2\) contains “dog”: 1100
\(\text{doc}_3\) contains “cat” and “dog”: 1110

- Some false positives; no false negatives
Bit-sliced signature files

- Motivation
 - To check if a document contains a word, we only need to check the bits that are set in the word's hash value.
 - So why bother retrieving all w bits of the signature?
- Instead of storing n signature files, store w bit slices.
- Only check the slices that correspond to the set bits in the word's hash value.
- Start from the sparse slices.

Inverted lists versus signatures

- Inverted lists better for most purposes (*TODX*, 1998).
- Problems of signature files
 - False positives.
 - Hard to use because t, w, and the hash function need tuning to work well.
 - Long documents will likely have mostly 1's in signatures.
 - Common words will create mostly 1's for their slices.
 - Difficult to extend with features such as frequency, proximity.
- Saving grace of signature files

Ranking result pages

- A single search may return many pages.
 - A user will not look at all result pages.
 - Complete result may be unnecessary.
- Result pages need to be ranked.
- Possible ranking criteria
 - Based on content
 - Number of occurrences of the search terms.
 - Similarity to the query text.
 - Based on link structure
 - Backlink count.
 - PageRank.
 - And more…
Textual similarity

- Vocabulary: \([w_1, \ldots, w_n]\)
- IDF (Inverse Document Frequency): \([f_1, \ldots, f_m]\)
 - \(f_i = 1 / \text{the number of times } w_i \text{ appears on the Web}\)
- Significance of words on page \(p\): \([p_1 f_1, \ldots, p_n f_n]\)
 - \(p_i\) is the number of times \(w_i\) appears on \(p\)
- Textual similarity between two pages \(p\) and \(q\) is defined to be
 \([p_1 f_1, \ldots, p_n f_n]\) \(\cdot \) \([q_1 f_1, \ldots, q_n f_n]\)
 \(= p_1 q_1 f_1^2 + \ldots + p_n q_n f_n^2\)
 - \(q\) could be the query text

Why weight significance by IDF?

- Without IDF weighting, the similarity measure would be dominated by the stop words
- “the” occurs frequently on the Web, so its occurrence on a particular page should be considered less significant
- “engine” occurs infrequently on the Web, so its occurrence on a particular page should be considered more significant

Problems with content-based ranking

- Many pages containing search terms may be of poor quality or irrelevant
 - Example: a page with just a line “search engine”
- Many high-quality or relevant pages do not even contain the search terms
 - Example: Google homepage
- Page containing more occurrences of the search terms are ranked higher; spamming is easy
 - Example: a page with line “search engine” repeated many times
Backlink

- A page with more backlinks is ranked higher
- Intuition: Each backlink is a “vote” for the page’s importance
- Based on local link structure; still easy to spam
 - Create lots of pages that point to a particular page

Google’s PageRank

- Main idea: Pages pointed by high-ranking pages are ranked higher
 - Definition is recursive by design
 - Based on global link structure; hard to spam
- Naïve PageRank
 - \(N(p) \): number of outgoing links from page \(p \)
 - \(B(p) \): set of pages that point to \(p \)
 - \(\text{PageRank}(p) = \sum_{q \in B(p)} \left(\frac{\text{PageRank}(q)}{N(q)} \right) \)
 - Each page \(p \) gets a boost of its importance from each page that points to \(p \)
 - Each page \(q \) evenly distributes its importance to all pages that \(q \) points to

Calculating naïve PageRank

- Initially, set all PageRank’s to 1; then evaluate
 - \(\text{PageRank}(p) \leftarrow \sum_{q \in B(p)} \left(\frac{\text{PageRank}(q)}{N(q)} \right) \)
 - Repeatedly until the values converge (i.e. a fixed point is reached)
Random surfer model

- A random surfer
 - Starts with a random page
 - Randomly selects a link on the page to visit next
 - Never uses the “back” button

- PageRank(p) measures the probability that a random surfer visits page p

Problems with the naïve PageRank

- Dead end: a page with no outgoing links
 - A dead end causes all importance to “leak” eventually out of the Web
- Spider trap: a group of pages with no links out of the group
 - A spider trap will eventually accumulate all importance of the Web

Practical PageRank

- d: decay factor
- PageRank(p) =
 \[
 d \cdot \sum_{q \in B(p)} \text{PageRank}(q) / N(q) + (1 - d)
 \]

- Intuition in the random surfer model
 - A surfer occasionally gets bored and jumps to a random page on the Web instead of following a random link on the current page
Google (1998)

- Inverted lists in practice contain a lot of context information

<table>
<thead>
<tr>
<th>HIT 2 bytes</th>
<th>Relative</th>
<th>Font size</th>
<th>position</th>
<th>within the page</th>
</tr>
</thead>
<tbody>
<tr>
<td>fancy</td>
<td>cap 1</td>
<td>imp 7</td>
<td>type 4</td>
<td>position 8</td>
</tr>
<tr>
<td>In URL/title tag within the anchor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- PageRank is not the final ranking
 - Type-weight: depends on the type of the occurrence
 - For example, large font weighs more than small font
 - Count-weight: depends on the number of occurrences
 - Increases linearly first but then tapers off
 - For multiple search terms, nearby occurrences are matched together and a proximity measure is computed
 - Closer proximity weights more

Trie: a string index

- A tree with edges labeled by characters
- A node represents the string obtained by concatenating all characters along the path from the root

- Compact trie: replace a path without branches by a single edge labeled by a string

Suffix tree

- Index all suffixes of a large string in a compact trie
- Can support arbitrary substring matching
- Internal nodes have fan-out ≥ 2 (except the root)
- No two edges out of the same node can share the same first character

To get linear space
- Instead of inlining the string labels, store pointers to them in the original string
- Bad for external memory
Patricia trie, Pat tree, String B-tree

A Patricia trie is just like a compact trie, but
- Instead of labeling each edge by a string, only label by the first character and the string length
- Leaves point to strings
- Faster search (especially for external memory) because of inlining of the first character
- But must validate answer at leaves for skipped characters

- A Pat tree indexes all suffixes of a string in a Patricia trie
- A String B-tree uses a Patricia trie to store and compare strings in B-tree nodes

Summary

- General tree-based string indexing tricks
 - Trie, Patricia trie, String B-tree
- Two general ways to index for substring queries
 - Index words: inverted lists, signature files
 - Index all suffixes: suffix tree, Pat tree, suffix array (not covered)
- Web search and information retrieval go beyond substring queries
 - IDF, PageRank, …