Relational Database Design Theory
Part I

CPS 116
Introduction to Database Systems

Announcements (September 11)

- Homework #1 due in one week
- Details of the course project and a list of suggested ideas will be available this Thursday

Motivation

- How do we tell if a design is bad, e.g., $\text{StudentEnroll}(\text{SID}, \text{name}, \text{CID})$?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

FD examples

Address (street_address, city, state, zip)

- Trivial FD: LHS \supseteq RHS
- Completely non-trivial FD: LHS \cap RHS = \emptyset

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes \{A_1, A_2, \ldots\} functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)
- Algorithm for computing the closure
 - Start with closure = Z
 - If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

$\textit{StudentGrade (SID, name, email, CID, grade)}$

- $\textit{SID} \rightarrow \textit{name, email}$
- $\textit{email} \rightarrow \textit{SID}$
- $\textit{SID, CID} \rightarrow \textit{grade}$

(Not a good design, and we will see why later)
Example of computing closure

- \(F \) includes:
 - \(SID \rightarrow \text{name, email} \)
 - \(\text{email} \rightarrow \text{SID} \)
 - \(\text{SID}, \text{CID} \rightarrow \text{grade} \)
- \(\{ \text{CID, email} \}^+ = ? \)

Using attribute closure

Given a relation \(R \) and set of FD's \(F \)
- Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Compute \(X^+ \) with respect to \(F \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follow from \(F \)
- Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(F \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is minimal (how?)

Rules of FD's

- Armstrong's axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
Using rules of FD’s

Given a relation R and set of FD’s F

Does another FD X → Y follow from F?

- Use the rules to come up with a proof

Example:

- F includes:
 - SID → name, email, email → SID; SID, CID → grade
- CID, email → grade?
 - email → SID (given in F)
 - CID, email → CID, SID (augmentation)
 - SID, CID → grade (given in F)
 - CID, email → grade (transitivity)

Non-key FD’s

- Consider a non-trivial FD X → Y where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

That b is always associated with a is recorded by multiple rows: redundancy, update anomaly, deletion anomaly

Example of redundancy

- StudentGrade (SID, name, email, CID, grade)
- SID → name, email

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B-</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>323</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS116</td>
<td>B+</td>
</tr>
<tr>
<td>652</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>652</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS114</td>
<td>C</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Decomposition

- Eliminates redundancy
- To get back to the original relation:

Unnecessary decomposition

Bad decomposition
Lossless join decomposition

- Decompose relation \(R \) into relations \(S \) and \(T \)
 - \(\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T) \)
 - \(S = \pi_{\text{attrs}(S)}(R) \)
 - \(T = \pi_{\text{attrs}(T)}(R) \)

- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that \(R = S \bowtie T \)

- Any decomposition gives \(R \subseteq S \bowtie T \) (why?)
 - A lossy decomposition is one with \(R \subset S \bowtie T \)

Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

Questions about decomposition

- When to decompose

- How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from “key \rightarrow other attributes”

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- $\text{StudentGrade}(\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade})$
- BCNF violation: $\text{SID} \rightarrow \text{name}, \text{email}$

- $\text{Student}(\text{SID}, \text{name}, \text{email})$
- $\text{Grade}(\text{SID}, \text{CID}, \text{grade})$

- BCNF
Another example

StudentGrade (SID, name, email, CID, grade)

BCNF violation: email → SID

Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:

- Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
 - Proof makes use of the fact that \(X \rightarrow Y \)

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s