Relational Database Design Theory

Part I

CPS 116
Introduction to Database Systems

Motivation

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>CPS116</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>CPS116</td>
</tr>
<tr>
<td>……</td>
<td>……</td>
<td>……</td>
</tr>
</tbody>
</table>

- How do we tell if a design is bad, e.g., `StudentEnroll (SID, name, CID)`?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

FD examples

Address $(\text{street_address}, \text{city}, \text{state}, \text{zip})$

- $\text{street_address}, \text{city}, \text{state} \rightarrow \text{zip}$
- $\text{zip} \rightarrow \text{city}, \text{state}$
- $\text{zip}, \text{state} \rightarrow \text{zip}$?
 - This is a trivial FD
 - Trivial FD: $\text{LHS} \supseteq \text{RHS}$
- $\text{zip} \rightarrow \text{state}, \text{zip}$?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: $\text{LHS} \cap \text{RHS} = \emptyset$

Keys redefined using FD’s

A set of attributes K is a key for a relation R if

- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal

Announcements (September 11)

- Homework #1 due in one week
- Details of the course project and a list of suggested ideas will be available this Thursday
Reasoning with FD’s

Given a relation R and a set of FD’s F

- Does another FD follow from F?
 - Are some of the FD’s in F redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD’s F that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to F is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 \ldots$)
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \rightarrow Y$ is in F and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

Example of computing closure

- F includes:
 - $SID \rightarrow name, email$
 - $email \rightarrow SID$
 - $SID, CID \rightarrow grade$
- $\{ CID, email \}^+ = ?$
- $email \rightarrow SID$
 - Add SID; closure is now $\{ CID, email, SID \}$
- $SID \rightarrow name, email$
 - Add $name, email$; closure is now $\{ CID, email, SID, name \}$
- $SID, CID \rightarrow grade$
 - Add $grade$; closure is now all the attributes in StudentGrade

Using attribute closure

Given a relation R and set of FD’s F

- Does another FD $X \rightarrow Y$ follow from F?
 - Compute X^+ with respect to F
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from F
- Is K a key of R?
 - Compute K^+ with respect to F
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
Using rules of FD’s

Given a relation R and set of FD’s F

- Does another FD $X \rightarrow Y$ follow from F?
 - Use the rules to come up with a proof
 - Example:
 - F includes: $SID \rightarrow name, email; email \rightarrow SID; SID, CID \rightarrow grade$
 - $CID, email \rightarrow grade$?
 - $email \rightarrow SID$ (given in F)
 - $CID, email \rightarrow CID, SID$ (augmentation)
 - $SID, CID \rightarrow grade$ (given in F)
 - $CID, email \rightarrow grade$ (transitivity)

Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

Example of redundancy

- StudentGrade (SID, $name$, $email$, CID, $grade$)
 - $SID \rightarrow name, email$

Decomposition

- Eliminates redundancy
- To get back to the original relation: \Join

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

Bad decomposition

- Association between CID and $grade$ is lost
- Join returns more rows than the original relation
Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(S)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from “key → other attributes”
- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition example

- **StudentGrade** (SID, name, email, CID, grade)
 - BCNF violation: $\text{SID} \rightarrow \text{name}, \text{email}$
- **Student** (SID, name, email)
- **Grade** (SID, CID, grade)
 - BCNF

StudentGrade (SID, name, email, CID, grade)
BCNF violation: SID → name, email

Student (SID, name, email)
BCNF

Grade (SID, CID, grade)
BCNF
Another example

\[\text{StudentGrade} (\text{SID}, \text{name}, \text{email}, \text{CID}, \text{grade}) \]

BCNF violation: \(\text{email} \rightarrow \text{SID} \)

\[\text{StudentID} (\text{email}, \text{SID}) \]

BCNF

\[\text{StudentGrade}' (\text{email}, \text{name}, \text{CID}, \text{grade}) \]

BCNF violation: \(\text{email} \rightarrow \text{name} \)

\[\text{StudentName} (\text{email}, \text{name}) \]

BCNF

\[\text{Grade} (\text{email}, \text{CID}, \text{grade}) \]

BCNF

Why is BCNF decomposition lossless

Given non-trivial \(\text{X} \rightarrow \text{Y} \) in \(R \) where \(\text{X} \) is not a super key of \(R \), need to prove:

\(\exists \text{anything we project always comes back in the join:} \)

\(R \subseteq \pi_{\text{XY}}(R) \triangleq \pi_{\text{XZ}}(R) \)

\(\exists \text{anything that comes back in the join must be in the original relation:} \)

\(R \supseteq \pi_{\text{XY}}(R) \triangleq \pi_{\text{XZ}}(R) \)

\(\exists \text{proof makes use of the fact that} \ X \rightarrow Y \)

Recap

\(\exists \) Functional dependencies: a generalization of the key concept

\(\exists \) Non-key functional dependencies: a source of redundancy

\(\exists \) BCNF decomposition: a method for removing redundancies

\(\exists \) BCNF decomposition is a lossless join decomposition

\(\exists \) BCNF: schema in this normal form has no redundancy due to FD’s