SQL: Recursion

CPS 116
Introduction to Database Systems

Announcements (October 16)

- Still going over your project milestone 1 submissions; watch for email feedback by this weekend
- Homework #3 will not be assigned until next Tuesday—use this break to work more on project

A motivating example

```
<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Bart</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
</tbody>
</table>
```

- Example: find Bart’s ancestors
- "Ancestor" has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor

Recursion in SQL

- SQL2 had no recursion
- You can find Bart’s parents, grandparents, great grandparents, etc.
  ```
  SELECT p1.parent AS grandparent
  FROM Parent p1, Parent p2
  WHERE p1.child = p2.parent
  AND p2.child = 'Bart';
  ```
- But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
 - WITH clause
 - Implemented in DB2 (called common table expressions)

Ancestor query in SQL3

```
WITH Ancestor(anc, desc) AS
  (SELECT parent, child FROM Parent)

UNION
  (SELECT a1.anc, a2.desc
   FROM Ancestor a1, Ancestor a2
   WHERE a1.desc = a2.anc)
  SELECT anc
  FROM Ancestor
  WHERE desc = 'Bart';
```

Fixed point of a function

- If $f: T \rightarrow T$ is a function from a type T to itself, a fixed point of f is a value x such that $f(x) = x$
- Example: What is the fixed point of $f(x) = x / 2$?
 - 0, because $f(0) = 0 / 2 = 0$
- To compute a fixed point of f
 - Start with a "seed": $x \leftarrow x_0$
 - Compute $f(x)$
 - If $f(x) = x$, stop; x is fixed point of f
 - Otherwise, $x \leftarrow f(x)$; repeat
- Example: compute the fixed point of $f(x) = x / 2$
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... → 0
Fixed point of a query

- A query q is just a function that maps an input table to an output table, so a fixed point of q is a table T such that $q(T) = T$
- To compute fixed point of q
 - Start with an empty table: $T ← \emptyset$
 - Evaluate q over T
 - If the result is identical to T, stop; T is a fixed point
 - Otherwise, let T be the new result; repeat
 - Starting from \emptyset produces the unique minimal fixed point (assuming q is monotone)

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
- We stop when no new facts can be proven

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated Ancestor rows with Parent
 - For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows
- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: $a → b → c → d → e$
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps
 - More work: e.g., $a → d$ has two different derivations

Mutual recursion example

- Table Natural (n) contains $1, 2, \ldots, 100$
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an odd number
- With Even(n) as
 (SELECT n FROM Natural WHERE $n = \text{any (SELECT } n + 1 \text{ FROM Odd)}$)
- Odd(n) as
 (SELECT n FROM Natural WHERE $n = 1$)
 UNION
 (SELECT n FROM Natural WHERE $n = \text{any (SELECT } n + 1 \text{ FROM Even)}$)

Finding ancestors

- With Ancestor(anc, desc) as
 (SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2 WHERE a1.desc = a2.anc)
- Think of it as Ancestor = q(Ancestor)
Operational semantics of \textbf{WITH}

- \textbf{WITH} R_1 AS Q_1, ..., R_n AS Q_n
- Q_1, ..., Q_n may refer to R_1, ..., R_n
- Operational semantics

1. $R_i \leftarrow \emptyset$, ..., $R_n \leftarrow \emptyset$
2. Evaluate Q_1, ..., Q_n using the current contents of R_1, ..., R_n;
 $R_i^{\text{new}} \leftarrow Q_i$, ..., $R_n^{\text{new}} \leftarrow Q_n$
3. If $R_i^{\text{new}} \neq R_i$ for any i
 - 3.1. $R_1 \leftarrow R_1^{\text{new}}$, ..., $R_n \leftarrow R_n^{\text{new}}$
 - 3.2. Go to 2.
4. Compute Q using the current contents of R_1, ..., R_n and output the result

Computing mutual recursion

\textbf{WITH} $\text{Even}(n)$ AS (SELECT n FROM Natural WHERE $n = \text{ANY}(SELECT n+1$ FROM Odd)), $\text{Odd}(n)$ AS (SELECT n FROM Natural WHERE $n = \text{ANY}(SELECT n+1$ FROM Even))

- $\text{Even} = \emptyset$, $\text{Odd} = \emptyset$
- $\text{Even} = \emptyset$, $\text{Odd} = \{1\}$
- $\text{Even} = \{2\}$, $\text{Odd} = \{1\}$
- $\text{Even} = \{2\}$, $\text{Odd} = \{1, 3\}$
- $\text{Even} = \{2, 4\}$, $\text{Odd} = \{1, 3\}$
- $\text{Even} = \{2, 4\}$, $\text{Odd} = \{1, 3, 5\}$
- ...

Fixed points are not unique

\textbf{WITH} $\text{Ancestor}(\text{anc}, \text{desc})$ AS ((SELECT parent, child FROM Parent)
UNION
(SELECT $a_1.\text{anc}$, $a_2.\text{desc}$ FROM Ancestor a_1, Ancestor a_2
WHERE $a_1.\text{desc} = a_2.\text{anc}$))

- There may be many other fixed points
- But if g is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \emptyset
- Thus the unique minimal fixed point is the “natural” answer to the query

Note that the bogus tuple reinforces itself!

Mixing negation with recursion

- If g is non-monotone
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—so which one is the right answer?
- Example: reward students with GPA higher than 3.9
 - Those not on the Dean’s List should get a scholarship
 - Those without scholarships should be on the Dean’s List
- \textbf{WITH} $\text{Scholarship}(\text{SID})$ AS (SELECT SID FROM Student WHERE GPA > 3.9 AND SID NOT IN (SELECT SID FROM DeansList)), $\text{DeansList}(\text{SID})$ AS (SELECT SID FROM Student WHERE GPA > 3.9 AND SID NOT IN (SELECT SID FROM Scholarship))

Multiple minimal fixed points

\textbf{WITH} $\text{Scholarship}(\text{SID})$ AS (SELECT SID FROM Student WHERE GPA > 3.9 AND SID NOT IN (SELECT SID FROM DeansList)), $\text{DeansList}(\text{SID})$ AS (SELECT SID FROM Student WHERE GPA > 3.9 AND SID NOT IN (SELECT SID FROM Scholarship))

- The fixed-point iteration does not converge
Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WITH
 - A directed edge \(R \to S \) if \(R \) is defined in terms of \(S \)
 - Label the directed edge “\(\neg \)” if the query defining \(R \) is not monotone with respect to \(S \)
- Legal SQL3 recursion: no cycle containing a “\(\neg \)” edge
 - Called stratified negation
- Bad mix: a cycle with at least one edge labeled “\(\neg \)”

Legal SQL3 recursion: no cycle containing a “\(\neg \)” edge

Stratified negation example

- Find pairs of persons with no common ancestors

```
WITH Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent) UNION
   (SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc)),
  Person(person) AS
  ((SELECT t FROM P t) UNION
   Ancestor
   ((SELECT paren
     FROM P paren)
    UNION
    (SELECT child FROM Parent)),
  NoCommonAnc(person1, person2) AS
  ((SELECT p1.person, p2.person
    FROM Person p1, Person p2
    WHERE p1.person <> p2.person)
   EXCEPT
   (SELECT a1.desc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.anc = a2.anc))
SELECT * FROM NoCommonAnc;
```

Evaluating stratified negation

- The stratum of a node \(R \) is the maximum number of “\(\neg \)” edges on any path from \(R \) in the dependency graph
 - \(\text{Ancestor} \): stratum 0
 - \(\text{Person} \): stratum 0
 - \(\text{NoCommonAnc} \): stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: \(\text{Ancestor} \) and \(\text{Person} \)
 - Stratum 1: \(\text{NoCommonAnc} \)
- Intuitively, there is no negation within each stratum

Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \(\emptyset \)
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)