Query Optimization

CPS 116
Introduction to Database Systems

Announcements (November 20)
- Homework #4 (last one and short) assigned today
 - Due next Thursday

Query optimization
- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Plan enumeration in relational algebra
- Apply relational algebra equivalences
 - Join reordering: \(\times \) and \(\bowtie \) are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences
- Convert \(\sigma_p \times \) to/from \(\bowtie p \): \(\sigma_p(R \times S) = R \bowtie p S \)
- Merge/split \(\sigma_p \)'s: \(\sigma_p \bowtie p (\pi_{L_1}(R \bowtie p \pi_{L_2}(S))) = \pi_{L_1}(\sigma_p(R \bowtie p \pi_{L_2}(S))) \), where \(L_1 \subseteq L_2 \)
- Push down/pull up \(\sigma_p \):
 - \(\sigma_p \bowtie p \bowtie p (R \bowtie p S) = (\sigma_{p'}(R \bowtie p \pi_{L_1}(S))) \bowtie p (\sigma_p(S)) \), where
 - \(p' \) is a predicate involving only \(R \) columns
 - \(p \) is a predicate involving only \(S \) columns
 - \(p \) and \(p' \) are predicates involving both \(R \) and \(S \) columns
- Push down \(\pi \): \(\pi_L(\sigma_p(R)) = \pi_L(\sigma_{p_L}(\pi_L(R))) \), where
 - \(L \) is the set of columns referenced by \(p \) that are not in \(L \)
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
 - Wrong—consider two Bart’s, each taking two classes
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
 - Right—assuming Student.SID is a key

Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';
 - New subquery is inefficient (computes enrollment for all courses)
 - Suppose a CPS class is empty?

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt FROM Magic, Enroll WHERE Magic.CID = Enroll.CID GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;
 - Process the outer query without the subquery
 - Collect bindings
 - Evaluate the subquery with bindings
 - Finally, refine the outer query

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

```
<table>
<thead>
<tr>
<th>PROJECT (R)</th>
<th>MERGE-JOIN (G,D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERGE-JOIN (D)</td>
<td>SCAN (Course)</td>
</tr>
<tr>
<td>FILTER (name = &quot;Bart&quot;)</td>
<td>SORT (D)</td>
</tr>
<tr>
<td>SCAN (Student)</td>
<td></td>
</tr>
</tbody>
</table>
```

- We have: cost estimation for each operator
 - Example: $\text{SORT}(\text{GID})$ takes $2 \times B(\text{input})$
 - But what is $B(\text{input})$?
- We need: size of intermediate results

Selections with equality predicates

- $Q: \sigma_A = v R$
- Suppose the following information is available
 - Size of R: $|R|$
 - Number of distinct A values in R: $|\pi_A R|$
- Assumptions
 - Values of A are uniformly distributed in R
 - Values of v in Q are uniformly distributed over all $R.A$ values
 - $|Q| \approx |R|/|\pi_A R|$
 - Selectivity factor of $(A = v)$ is $1/|\pi_A R|$

Negated and disjunctive predicates

- $Q: \sigma_A \neq v R$
- Additional assumptions
 - $(A = a)$ and $(B = v)$ are independent
 - Counterexample: major and advisor
- No “over”-selection
 - Counterexample: A is the key
- $|Q| \approx |R|\left(\frac{1}{|\pi_A R|} \cdot \frac{1}{|\pi_B R|}\right)$
 - Reduce total size by all selectivity factors

Range predicates

- $Q: \sigma_A > v R$
- Not enough information!
 - Just pick, say, $|Q| \approx |R| \cdot 1/3$
- With more information
 - Largest $R.A$ value: $\text{high}(R.A)$
 - Smallest $R.A$ value: $\text{low}(R.A)$
 - $|Q| \approx |R| \cdot \frac{(\text{high}(R.A) - v)}{(\text{high}(R.A) - \text{low}(R.A))}$
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

- $Q: R(A, B) \bowtie S(A, C)$
- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \leq |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins
 - $|Q| \approx |R| \cdot |S| / \max(\pi_A R, |\pi_A S|)$
 - Selectivity factor of $R.A = S.A$ is $1/\max(\pi_A R, |\pi_A S|)$
Multiway equi-join

- Q: \(R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A (R \bowtie S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins (for value sets from the referencing table)

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or under estimate consistently
 - May lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
 - Not covered: better estimation using histograms

Multiway equi-join (cont’d)

- Q: \(R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T|\)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|) \)
 - \(S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|) \)
 - \(|Q| \approx (|R| \cdot |S| \cdot |T|)/(\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|))\)

Search for the best plan

- Huge search space
 - “Bushy” plan example:

 ![Bushy Plan Example]

 - Just considering different join orders, there are \((2^n - 2)! / (n - 1)! \) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n \)
 - 30240 for \(n = 6 \)
 - And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n \)?
 - Significantly fewer, but still lots—\(n! \) (720 for \(n = 6 \))

A greedy algorithm

- Start with the pair \(S_j, S_i \) with the smallest estimated size for \(S_j \bowtie S_i \)
- Repeat until no relation is left:
 - Pick \(S_k \) from the remaining relations such that the join of \(S_k \) and the current result yields an intermediate result of the smallest size
 - Pick most efficient join method
 - Minimize expected size

Remaining relations to be joined

Current subplan
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
 - Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
 - Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach