Announcements (December 4)

- Homework #4 will be graded over this weekend
 - Sample solution available on Thursday
- Remember your project demo slot!
- Final exam next Saturday, Dec. 15, 7-10pm
 - Again, open book, open notes
 - Focus on the second half of the course
 - Sample final available now
 - Sample final solution available Thursday
- Wrap-up and review on Thursday

Data integration

- Data resides in many distributed, heterogeneous OLTP (On-Line Transaction Processing) sources
 - Sales, inventory, customer, …
 - NC branch, NY branch, CA branch, …
- Need to support OLAP (On-Line Analytical Processing) over an integrated view of the data
- Possible approaches to integration
 - Eager: integrate in advance and store the integrated data at a central repository called the data warehouse
 - Lazy: integrate on demand; process queries over distributed sources—mediated or federated systems
OLTP versus OLAP

<table>
<thead>
<tr>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mostly updates</td>
<td>Mostly reads</td>
</tr>
<tr>
<td>Short, simple transactions</td>
<td>Long, complex queries</td>
</tr>
<tr>
<td>Clerical users</td>
<td>Analysts, decision makers</td>
</tr>
<tr>
<td>Goal: ACID, transaction throughput</td>
<td>Goal: fast queries</td>
</tr>
</tbody>
</table>

Implications on database design and optimization?

Eager versus lazy integration

<table>
<thead>
<tr>
<th>Eager (warehousing)</th>
<th>Lazy</th>
</tr>
</thead>
<tbody>
<tr>
<td>In advance: before queries</td>
<td>On demand: at query time</td>
</tr>
<tr>
<td>Copy data from sources</td>
<td>Leave data at sources</td>
</tr>
<tr>
<td>Answer could be stale</td>
<td>Answer is more up-to-date</td>
</tr>
<tr>
<td>Need to maintain consistency</td>
<td>No need to maintain consistency</td>
</tr>
<tr>
<td>Query processing is local to the warehouse</td>
<td>Sources participate in query processing</td>
</tr>
<tr>
<td>Faster</td>
<td>Slower</td>
</tr>
<tr>
<td>Can operate when sources are unavailable</td>
<td>Interferes with local processing</td>
</tr>
</tbody>
</table>

Maintaining a data warehouse

- The “ETL” process
 - Extraction: extract relevant data and/or changes from sources
 - Transformation: transform data to match the warehouse schema
 - Loading: integrate data/changes into the warehouse

- Approaches
 - Recomputation
 - Easy to implement; just take periodic dumps of the sources, say, every night
 - Incremental maintenance
 - Compute and apply only incremental changes
"Star" schema of a data warehouse

<table>
<thead>
<tr>
<th>Product</th>
<th>Store</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>OID</td>
<td>CID</td>
</tr>
<tr>
<td>p1</td>
<td>c3</td>
<td>s1</td>
</tr>
<tr>
<td>p2</td>
<td>c3</td>
<td>s2</td>
</tr>
<tr>
<td>p3</td>
<td>c4</td>
<td>s3</td>
</tr>
</tbody>
</table>

Fact table
- Big
- Constantly growing
- Stores measures (often aggregated in queries)

Dimension tables
- Small
- Updated infrequently

Data cube

Simplified schema: Sale (CID, PID, SID, qty)

<table>
<thead>
<tr>
<th>Sale</th>
<th>Product</th>
<th>Store</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>SID</td>
<td>CID</td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>c3</td>
<td>s1</td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>c4</td>
<td>s1</td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td>c5</td>
<td>s1</td>
<td></td>
</tr>
</tbody>
</table>

Simplified schema: Sale (CID, PID, SID, qty)

<table>
<thead>
<tr>
<th>Sale</th>
<th>Product</th>
<th>Store</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>SID</td>
<td>CID</td>
<td></td>
</tr>
<tr>
<td>p1</td>
<td>c3</td>
<td>s1</td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>c3</td>
<td>s1</td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td>c4</td>
<td>s1</td>
<td></td>
</tr>
</tbody>
</table>

Completing the cube—plane

Total quantity of sales for each product in each store

SELECT PID, SID, SUM(qty) FROM Sale
GROUP BY PID, SID;

Project all points onto Product-Store plane

(ALL, p1, s3) = 5
(ALL, c3, p1, s3) = 2
(ALL, c4, p1, s3) = 4
(ALL, c5, p1, s3) = 3
(6, p2, s1) = 2
(6, p3, s1) = 1
(6, p1, s3) = 5
(6, p1, s1) = 3
(6, p1, s3) = 5
Completing the cube—axis

Total quantity of sales for each product

\[
\text{SELECT PID, SUM(qty) FROM Sale GROUP BY PID;}
\]

Completion points onto the Product axis

\[
(\text{ALL, p1, s3}) = 5 \quad (\text{c5, p1, s1}) = 3
\]

\[
(\text{ALL, p2, s1}) = 2 \quad (\text{c3, p1, s1}) = 1
\]

\[
(\text{ALL, p1, ALL}) = 9 \quad (\text{c5, p1, s1}) = 3
\]

Completing the cube—origin

Total quantity of sales

\[
\text{SELECT SUM(qty) FROM Sale;}
\]

Completion points onto the origin

\[
(\text{ALL, p1, s3}) = 5 \quad (\text{c5, p1, s1}) = 3
\]

\[
(\text{ALL, p2, s1}) = 2 \quad (\text{c3, p1, s1}) = 1
\]

\[
(\text{ALL, p1, ALL}) = 9 \quad (\text{c5, p1, s1}) = 3
\]

CUBE operator

- **Sale (CID, PID, SID, qty)**
- Proposed SQL extension:
 \[
 \text{SELECT SUM(qty) FROM Sale GROUP BY CUBE CID, PID, SID;}
 \]
- Output contains:
 - Normal groups produced by GROUP BY
 - (c1, p1, s1, sum), (c1, p2, s1, sum), etc.
 - Groups with one or more ALL’s
 - (ALL, p1, s1, sum), (ALL, ALL, sum), (ALL, ALL, ALL, sum), etc.
- Can you write a CUBE query using only GROUP BY’s?

Gray et al., "Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total." ICDE 1996
Automatic summary tables

- Computing GROUP BY and CUBE aggregates is expensive
- OLAP queries perform these operations over and over again

- Idea: precompute and store the aggregates as automatic summary tables (a DB2 term)
 - Maintained automatically as base data changes
 - Same as materialized views

Aggregation view lattice

- Roll up
- Drill down

Selecting views to materialize

- Factors in deciding what to materialize
 - What is its storage cost?
 - What is its update cost?
 - Which queries can benefit from it?
 - How much can a query benefit from it?

- Example
 - GROUP BY ∅ is small, but not useful to most queries
 - GROUP BY CID, PID, SID is useful to any query, but too large to be beneficial

Harinarayan et al., "Implementing Data Cubes Efficiently." SIGMOD 1996
Data mining
- Data → knowledge
- DBMS meets AI and statistics
- Clustering, prediction (classification and regression), association analysis, outlier analysis, evolution analysis, etc.
 - Usually complex statistical “queries” that are difficult to answer → often specialized algorithms outside DBMS
- We will focus on frequent itemset mining

Mining frequent itemsets
- Given: a large database of transactions, each containing a set of items
 - Example: market baskets
- Find all frequent itemsets
 - A set of items X is frequent if no less than s_{min}% of all transactions contain X
 - Examples: \{diaper, beer\}, \{scanner, color printer\}

First try
- A naïve algorithm
 - Keep a running count for each possible itemset
 - For each transaction T, and for each itemset X, if T contains X then increment the count for X
 - Return itemsets with large enough counts
- Problem:
The Apriori property

- All subsets of a frequent itemset must also be frequent
 - Because any transaction that contains \(X \) must also contains subsets of \(X \)

- If we have already verified that \(X \) is infrequent, there is no need to count \(X \)'s supersets because they must be infrequent too

The Apriori algorithm

Multiple passes over the transactions

- Pass \(k \) finds all frequent \(k \)-itemsets (itemset of size \(k \))
- Use the set of frequent \(k \)-itemsets found in pass \(k \) to construct candidate \((k+1)\)-itemsets to be counted in pass \((k+1)\)
 - A \((k+1)\)-itemset is a candidate only if all its subsets of size \(k \) are frequent

Example: pass 1

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>6</td>
</tr>
<tr>
<td>{B}</td>
<td>7</td>
</tr>
<tr>
<td>{C}</td>
<td>6</td>
</tr>
<tr>
<td>{D}</td>
<td>2</td>
</tr>
<tr>
<td>{E}</td>
<td>2</td>
</tr>
</tbody>
</table>

Transactions

\(\text{min} \% = 20\% \)

Frequent 1-itemsets

(Itemset \{F\} is infrequent)
Example: pass 2

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001</td>
<td>A, B, E</td>
</tr>
<tr>
<td>T002</td>
<td>A, D</td>
</tr>
<tr>
<td>T003</td>
<td>B, C</td>
</tr>
<tr>
<td>T004</td>
<td>A, B, D</td>
</tr>
<tr>
<td>T005</td>
<td>A, C</td>
</tr>
<tr>
<td>T006</td>
<td>B, C</td>
</tr>
<tr>
<td>T007</td>
<td>A, C</td>
</tr>
<tr>
<td>T008</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>T009</td>
<td>A, B, C</td>
</tr>
<tr>
<td>T010</td>
<td>F</td>
</tr>
</tbody>
</table>

Transactions
$m_{\text{min}}\% = 20\%$

Generate candidates
Scan and count
Check min. support

Frequent 1-itemsets

- \{A\} 6
- \{B\} 7
- \{C\} 6
- \{D\} 2
- \{E\} 2

Frequent 2-itemsets

- \{A, B\} 4
- \{A, C\} 4
- \{A, D\} 1
- \{A, E\} 2
- \{B, C\} 4
- \{B, D\} 2
- \{B, E\} 2
- \{C, D\} 2
- \{C, E\} 1
- \{D, E\} 0

Candidate 2-itemsets

Example: pass 3

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001</td>
<td>A, B, E</td>
</tr>
<tr>
<td>T002</td>
<td>A, D</td>
</tr>
<tr>
<td>T003</td>
<td>B, C</td>
</tr>
<tr>
<td>T004</td>
<td>A, B, D</td>
</tr>
<tr>
<td>T005</td>
<td>A, C</td>
</tr>
<tr>
<td>T006</td>
<td>B, C</td>
</tr>
<tr>
<td>T007</td>
<td>A, C</td>
</tr>
<tr>
<td>T008</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>T009</td>
<td>A, B, C</td>
</tr>
<tr>
<td>T010</td>
<td>F</td>
</tr>
</tbody>
</table>

Transactions
$m_{\text{min}}\% = 20\%$

Generate candidates
Scan and count
Check min. support

Frequent 1-itemsets

- \{A\} 4
- \{B\} 4
- \{C\} 4
- \{D\} 2
- \{E\} 2

Frequent 2-itemsets

- \{A, B\} 4
- \{A, C\} 4
- \{A, D\} 2
- \{A, E\} 2
- \{B, C\} 4
- \{B, D\} 2
- \{B, E\} 2
- \{C, D\} 2
- \{C, E\} 1
- \{D, E\} 0

Candidate 3-itemsets

Example: pass 4

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001</td>
<td>A, B, E</td>
</tr>
<tr>
<td>T002</td>
<td>A, D</td>
</tr>
<tr>
<td>T003</td>
<td>B, C</td>
</tr>
<tr>
<td>T004</td>
<td>A, B, D</td>
</tr>
<tr>
<td>T005</td>
<td>A, C</td>
</tr>
<tr>
<td>T006</td>
<td>B, C</td>
</tr>
<tr>
<td>T007</td>
<td>A, C</td>
</tr>
<tr>
<td>T008</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>T009</td>
<td>A, B, C</td>
</tr>
<tr>
<td>T010</td>
<td>F</td>
</tr>
</tbody>
</table>

Transactions
$m_{\text{min}}\% = 20\%$

Generate candidates

Frequent 1-itemsets

- \{A, B, C\} 2

Frequent 3-itemsets

- \{A, B, E\} 2

Candidate 4-itemsets

- \{A, B, C, E\} 2

No more itemsets to count!
Example: final answer

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>6</td>
</tr>
<tr>
<td>{B}</td>
<td>7</td>
</tr>
<tr>
<td>{C}</td>
<td>6</td>
</tr>
<tr>
<td>{D}</td>
<td>2</td>
</tr>
<tr>
<td>{E}</td>
<td>2</td>
</tr>
</tbody>
</table>

Frequent 1-itemsets

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>{A,C}</td>
<td>4</td>
</tr>
<tr>
<td>{A,E}</td>
<td>2</td>
</tr>
</tbody>
</table>

Frequent 2-itemsets

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>2</td>
</tr>
<tr>
<td>{A,B,E}</td>
<td>2</td>
</tr>
</tbody>
</table>

Frequent 3-itemsets

Summary

- **Data warehousing**
 - Eagerly integrate data from operational sources and store a redundant copy to support OLAP
 - OLAP vs. OLTP: different workload \rightarrow different degree of redundancy

- **Data mining**
 - Only covered frequent itemset counting
 - Skipped many other techniques (clustering, classification, regression, etc.)
 - One key difference from statistics and machine learning: massive datasets and I/O-efficient algorithms