Relational Model & Algebra

CPS 116
Introduction to Database Systems

Announcements (Thu. Aug. 27)

- Homework #1 will be assigned next Tuesday
- Office hours: see also course website
 - Jun: LSRC D327
 - Tue. 1.5 hours before class; Thu. 1.5 hours after
 - Dongtao: LSRC D311
 - Mon. & Wed. 4-5pm; Fri. 3-5pm
- Lecture notes
 - I will bring hardcopies of the “notes” version to lectures
 - The “complete” version will be posted after lecture, so be selective in what you copy down

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
 - Set-valued attributes not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are identical if they agree on all attributes

- Simplicity is a virtue!
Example

<table>
<thead>
<tr>
<th>Student</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>name</td>
<td>age</td>
<td>GPA</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CID</td>
<td>title</td>
<td></td>
</tr>
<tr>
<td>CPS116</td>
<td>Intro. to Database Systems</td>
<td></td>
</tr>
<tr>
<td>CPS130</td>
<td>Analysis of Algorithms</td>
<td></td>
</tr>
<tr>
<td>CPS114</td>
<td>Computer Networks</td>
<td></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Enroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>CID</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>CPS116</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>CPS130</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>CPS114</td>
<td></td>
</tr>
</tbody>
</table>

Schema versus instance

- **Schema** (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- **Instance**
 - **Content**
 - Changes rapidly, but always conforms to the schema
 - Compare to type and objects of type in a programming language

Example

- **Schema**
 - **Student** (SID integer, name string, age integer, GPA float)
 - **Course** (CID string, title string)
 - **Enroll** (SID integer, CID integer)

- **Instance**
 - { (142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ... }
 - { (CPS116, Intro. to Database Systems), ... }
 - { (142, CPS116), (142, CPS114), ... }
Relational algebra

A language for querying relational databases based on operators:

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection

- Input: a table \(R \)
- Notation: \(\sigma_p R \)
 - \(p \) is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as \(R \), but only rows of \(R \) that satisfy \(p \)

Selection example

- Students with GPA higher than 3.0
 - \(\sigma_{GPA > 3.0} \) Student

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More on selection

- Selection predicate in general can include any column of R, constants, comparisons (=, ≤, etc.), and Boolean connectives (∧: and, ∨: or, and ¬: not)
 - Example: straight A students under 18 or over 21
 \[\sigma_{\text{GPA} \geq 4.0 \land (\text{age} < 18 \lor \text{age} > 21)} \text{Student} \]
- But you must be able to evaluate the predicate over a single row of the input table
 - Example: student with the highest GPA
 \[\sigma_{\text{GPA} \geq \text{all GPA in Student}} \text{Student} \]

Projection

- Input: a table R
- Notation: \(\pi_L R \)
 - \(L \) is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in \(L \)

Projection example

- ID’s and names of all students
 \[\pi_{\text{SID}, \text{name}} \text{Student} \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>807</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

\[\pi_{\text{age}} \text{ Student} \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

Student \(\times \) Enroll

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
<th>SID</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>142</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>123</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>142</td>
<td>CPS114</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>123</td>
<td>CPS114</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>142</td>
<td>CPS116</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
<td>123</td>
<td>CPS116</td>
</tr>
</tbody>
</table>
A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows).

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS116</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
<td>CPS114</td>
</tr>
</tbody>
</table>

- That means cross product is commutative, i.e., $R \times S = S \times R$ for any R and S.

Derived operator: join

(A.k.a. “theta-join”)

- Input: two tables R and S.
- Notation: $R \theta p S$
 - p is called a join condition/predicate.
- Purpose: relate rows from two tables according to some criteria.
- Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p.
- Shorthand for $\sigma_p (R \times S)$.

Join example

- Info about students, plus CID’s of their courses.

Use `table_name.column_name` syntax to disambiguate identically named columns from different input tables.
Derived operator: natural join

- Input: two tables R and S
- Notation: $R owtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for $\pi_p (R \bowtie_p S)$, where
 - p equates all attributes common to R and S
 - L is the union of all attributes from R and S, with duplicate attributes removed

Natural join example

- $\text{Student} \bowtie \text{Enroll} = \pi_L (\text{Student} \bowtie_p \text{Enroll})$
- $= \pi_{\text{SID, name, age, GPA, CID}} (\text{Student} \bowtie \text{Enroll})$

Union

- Input: two tables R and S
- Notation: $R \cup S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with duplicate rows eliminated
Difference

- Input: two tables \(R \) and \(S \)
- Notation: \(R - S \)
 - \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows in \(R \) that are not found in \(S \)

Derived operator: intersection

- Input: two tables \(R \) and \(S \)
- Notation: \(R \cap S \)
 - \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows that are in both \(R \) and \(S \)

Renaming

- Input: a table \(R \)
- Notation: \(\rho_{A_1, A_2, \ldots} R \) or \(\rho_{(A_1, A_2, \ldots)} R \)
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as \(R \)
- Used to
 - Avoid confusion caused by identical column names
 - Create identical column names for natural joins
Renaming example

- SID’s of students who take at least two courses

Summary of core operators

- Selection: $\sigma_p R$
- Projection: $\pi_x R$
- Cross product: $R \times S$
- Union: $R \cup S$
- Difference: $R - S$
- Renaming: $\rho_{A_1,A_2,...} R$
 - Does not really add "processing" power

Summary of derived operators

- Join: $R \bowtie S$
- Natural join: $R \bowtie S$
- Intersection: $R \cap S$

- Many more
 - Semijoin, anti-semijoin, quotient, …
An exercise

- Names of students in Lisa’s classes

 Writing a query bottom-up:

Another exercise

- CID’s of the courses that Lisa is NOT taking

 Writing a query top-down:

A trickier exercise

- Who has the highest GPA?
Monotone operators

Add more rows to the input...

- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain "correct" when more rows are added to the input
- Formally, for a monotone operator op:
 $R \subseteq R'$ implies $\text{op}(R) \subseteq \text{op}(R')$ for any R, R'

Classification of relational operators

- Selection: $σ_p R$
- Projection: $π_L R$
- Cross product: $R \times S$
- Join: $R \bowtie S$
- Natural join: $R \bowtie S$
- Union: $R \cup S$
- Difference: $R - S$
- Intersection: $R \cap S$

Why is “−” needed for highest GPA?

- Composition of monotone operators produces a monotone query
 - Old output rows remain "correct" when more rows are added to the input
- Highest-GPA query is
Why do we need core operator X?
- Difference
- Cross product
- Union
- Selection? Projection?
 - Homework problem 😊

Why is r.a. a good query language?
- Simple
 - A small set of core operators whose semantics are easy to grasp
- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators do look somewhat "procedural"
- Complete?
 - With respect to what?

Relational calculus
- \{ s.SID | s ∈ Student ∧ \\
 ¬(∃s' ∈ Student: s.GPA < s'.GPA) \}, or \\
- \{ s.SID | s ∈ Student ∧ \\
 (∀s' ∈ Student: s.GPA ≥ s'.GPA) \}
- Relational algebra = "safe" relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa
- Example of an unsafe relational calculus query
 - \{ s.name | ¬(s ∈ Student) \}
 - Cannot evaluate this query just by looking at the database
Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation Parent(parent, child), who are Bart’s ancestors?
- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level
- Recursion is added to SQL nevertheless!