Relational Database Design
Part II

CPS 116
Introduction to Database Systems

Announcements (Thu. Sep. 3)
- Homework #1 due in 1½ weeks
 • Start early!!!
- Details of the course project and a list of suggested ideas will be available next Thursday

Database design steps: review
- Understand the real-world domain being modeled
- Specify it using a database design model (e.g., E/R)
- Translate specification to the data model of DBMS (e.g., relational)
- Create DBMS schema
- Next: translating E/R design to relational schema

E/R model: review
- Entity sets
 • Keys
 • Weak entity sets
- Relationship sets
 • Attributes on relationships
 • Multiplicity
 • Roles
 • Binary versus N-ary relationships
 • Modeling N-ary relationships with weak entity sets and binary relationships
 • ISA relationships

Translating entity sets
- An entity set translates directly to a table
 • Attributes → columns
 • Key attributes → key columns

Translating weak entity sets
- Remember the “borrowed” key attributes
- Watch out for attribute name conflicts

Translation of E/R model to relational schema:
- Students (SID, name)
- Courses (CID, title)
- Enroll (SID, grade)
- Buildings (name, year)
- Rooms (building_name, room_number, capacity)
- Seats (building_name, room_number, seat_number, left_or_right)
- Building (building_name, year)
- Rooms (building_name, room_number, capacity)
Translating relationship sets

- A relationship set translates to a table
 - Keys of connected entity sets → columns
 - Attributes of the relationship set (if any) → columns
 - Multiplicity of the relationship set determines the key of the table

\[
\begin{array}{c}
\text{Students} \\
\text{name} \\
\text{Enroll} \\
\text{grade} \\
\text{Courses} \\
\text{CID} \\
\text{title}
\end{array}
\]

\[
\text{Enroll (SID, CID, grade)}
\]

More examples

- Notes

\[
\begin{array}{c}
\text{Students} \\
\text{name} \\
\text{TAs} \\
\text{TID} \\
\text{TAs} \\
\text{name} \\
\text{Marry (husband_SSN, wife_SSN)}
\end{array}
\]

Translating double diamonds

- Recall that a double-diamond relationship set connects a weak entity set to another entity set
- No need to translate because the relationship is implicit in the weak entity set’s translation

\[
\begin{array}{c}
\text{Room} \\
\text{number} \\
\text{capacity} \\
\text{Buildings} \\
\text{name} \\
\text{year} \\
\text{RoomInBuilding} \\
\text{(room building name, room number, building name)}
\end{array}
\]

\[
\text{is subsumed by}
\]

\[
\begin{array}{c}
\text{Rooms} \\
\text{building name} \\
\text{room number} \\
\text{capacity}
\end{array}
\]

Translating subclasses & ISA (approach 1)

- Entity-in-all-superclasses approach (“E/R style”)
 - An entity is represented in the table for each subclass to which it belongs
 - A table includes only the attributes directly attached to the corresponding entity set, plus the inherited key

\[
\begin{array}{c}
\text{Students} \\
\text{name} \\
\text{GradStudents} \\
\text{ISA} \\
\text{Course} (\text{CID, title}) \\
\text{Student} (\text{SID, name}) \\
\text{Enroll (SID, CID)} \\
\text{GradStudent (SID, name, office)}
\end{array}
\]

Translating subclasses & ISA (approach 2)

- Entity-in-most-specific-class approach (“OO style”)
 - An entity is only represented in one table (corresponding to the most specific entity set to which the entity belongs)
 - A table includes the attributes attached to the corresponding entity set, plus all inherited attributes

\[
\begin{array}{c}
\text{Students} \\
\text{name} \\
\text{GradStudents} \\
\text{office} \\
\text{GradStudents (444, "Apu", "D444") ∈ GradStudent (SID, name, office)}
\end{array}
\]

Translating subclasses & ISA (approach 3)

- All-entities-in-one-table approach (“NULL style”)
 - One relation for the root entity set, with all attributes found anywhere in the network of subclasses
 - Use a special NULL value in columns that are not relevant for a particular entity

\[
\begin{array}{c}
\text{Students} \\
\text{name} \\
\text{GradStudents} \\
\text{office} \\
\text{GradStudents (444, "Apu", "D444") ∈ GradStudent (SID, name, office)}
\end{array}
\]

\[
\text{Enroll (SID, CID)}
\]
Comparison of three approaches

- Entity-in-all-superclasses
 - Student (SID, name), GradStudent (SID, office)
 - Pro: All students are found in one table
 - Con: Attributes of grad students are scattered in different tables

- Entity-in-most-specific-class
 - Student (SID, name), GradStudent (SID, office)
 - Pro: All attributes of grad students are found in one table
 - Con: Grad students are scattered in different tables

- All-entities-in-one-table
 - Student (SID, name), GradStudent (SID, name, office)
 - Pro: Everything is in one table
 - Con: Too many NULL's; complicated if class hierarchy is complex

Simplifications and refinements

- Train (number, engineer), LocalTrain (number), ExpressTrain (number)
- Station (name, address), LocalStation (name), ExpressStation (name)
- LocalTrainStop (local_train_number, station_name, time)
- ExpressTrainStop (express_train_number, express_station_name, time)

- Eliminate LocalTrain table
 - Redundant: can be computed as πnumber (Train) → ExpressTrain
 - Why is redundancy bad?
 - Slightly harder to check that local_train_number is indeed a local train number

- Eliminate LocalStation table
 - It can be computed as πnumber (Station) → ExpressStation

An alternative design

- Train (number, engineer, type)
- Station (name, address, type)
- LocalTrainStop (train_number, station_name, time)

- Encode the type of train/station as a column rather than creating subclasses
- Some constraints are no longer captured
 - Type must be either "local" or "express"
 - Express trains only stop at express stations
- Fortunately, they can be expressed/declared explicitly as database constraints in SQL
- Arguably a better design because it is simpler!

Design principles

- KISS
 - Keep It Simple, Stupid

- Avoid redundancy
 - Redundancy wastes space, complicates updates and deletes, promotes inconsistency

- Capture essential constraints, but don’t introduce unnecessary restrictions

- Use your common sense
 - Warning: mechanical translation procedures given in this lecture are no substitute for your own judgment