Relational Database Design Theory

CPS 116
Introduction to Database Systems

Announcements (Tue. Sep. 8)

- Homework #1 due in one week
- Help session this Friday or next Monday?
 - Friday (Sep. 11): 4-5pm?
 - Next Monday (Sep. 14): 4-5pm?
 - Will email the announcement
- Course project description available on Thursday

Motivation

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>CPS116</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>CPS114</td>
</tr>
</tbody>
</table>

- How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

FD examples

Address (street_address, city, state, zip)

- street_address, city, state \rightarrow zip
- zip \rightarrow city, state
- zip, state \rightarrow zip?
 - This is a trivial FD
 - Trivial FD: LHS \supseteq RHS
- zip \rightarrow state, zip?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS $= \emptyset$

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of R
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal
Reasoning with FD’s

Given a relation \(R \) and a set of FD’s \(F \)

- Does another FD follow from \(F \)?
 - Are some of the FD’s in \(F \) redundant (i.e., they follow from the others)?
- Is \(K \) a key of \(R \)?
 - What are all the keys of \(R \)?

Attribute closure

- Given \(R \), a set of FD’s \(F \) that hold in \(R \), and a set of attributes \(Z \) in \(R \):
 - The closure of \(Z \) (denoted \(Z^+ \)) with respect to \(F \) is the set of all attributes \(\{ A_1, A_2, \ldots \} \) functionally determined by \(Z \) (that is, \(Z \rightarrow A_1 A_2 \ldots \))
- Algorithm for computing the closure
 - Start with closure = \(Z \)
 - If \(X \rightarrow Y \) is in \(F \) and \(X \) is already in the closure, then also add \(Y \) to the closure
 - Repeat until no more attributes can be added

A more complex example

\(\text{StudentGrade} (\text{SID}, \text{name, email, CID, grade}) \)

- \(\text{SID} \rightarrow \text{name, email} \)
- \(\text{email} \rightarrow \text{SID} \)
- \(\text{SID, CID} \rightarrow \text{grade} \)

(Not a good design, and we will see why later)

Example of computing closure

- \(F \) includes:
 - \(\text{SID} \rightarrow \text{name, email} \)
 - \(\text{email} \rightarrow \text{SID} \)
 - \(\text{SID, CID} \rightarrow \text{grade} \)
- \(\{ \text{CID, email} \}^+ = ? \)
- \(\text{email} \rightarrow \text{SID} \)
 - Add \(\text{SID} \); closure is now \(\{ \text{CID, email, SID} \} \)
- \(\text{SID} \rightarrow \text{name, email} \)
 - Add \(\text{name, email} \); closure is now \(\{ \text{CID, email, SID, name} \} \)
- \(\text{SID, CID} \rightarrow \text{grade} \)
 - Add \(\text{grade} \); closure is now all the attributes in \(\text{StudentGrade} \)

Using attribute closure

Given a relation \(R \) and set of FD’s \(F \)

- Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Compute \(X^+ \) with respect to \(F \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follow from \(F \)
- Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(F \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
- Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X
 - That b is always associated with a is recorded by multiple rows: redundancy, update anomaly, deletion anomaly

Example of redundancy

- StudentGrade (SID, $name$, $email$, CID, grade)
- $SID \rightarrow name, email$

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS116</td>
<td>A</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS114</td>
<td>A</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS114</td>
<td></td>
</tr>
<tr>
<td>536</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS114</td>
<td>C</td>
</tr>
<tr>
<td>536</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Decomposition

- Eliminates redundancy
- To get back to the original relation: $\triangleright\Delta$

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

Bad decomposition

- Association between CID and grade is lost
- Join returns more rows than the original relation

Lossless join decomposition

- Decompose relation R into relations S and T
 - $atts(R) = atts(S) \cup atts(T)$
 - $S = \pi_{atts(S)}(R)$
 - $T = \pi_{atts(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$
- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td>B-</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>CPS114</td>
<td>C</td>
</tr>
</tbody>
</table>

No way to tell which is the original relation

Questions about decomposition

- When to decompose

- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation \(R \) is in Boyce-Codd Normal Form if
 - For every non-trivial FD \(X \rightarrow Y \) in \(R \), \(X \) is a super key
 - That is, all FDs follow from “key \(\rightarrow \) other attributes”

- When to decompose
 - As long as some relation is not in BCNF

- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \)

- Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \), where \(Z \) contains all attributes of \(R \) that are in neither \(X \) nor \(Y \)

- Repeat until all relations are in BCNF

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)

BCNF violation: \(S ID \rightarrow name, email \)

Student (SID, name, email) Grade (SID, CID, grade)

BCNF BCNF

Another example

StudentGrade (SID, name, email, CID, grade)

BCNF violation: email \(\rightarrow \) SID

StudentID (email, SID)

BCNF

StudentGrade' (email, name, CID, grade)

BCNF violation: email \(\rightarrow \) name

StudentName (email, name)

BCNF

Grade (email, CID, grade)

BCNF
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join: $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation: $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Proof makes use of the fact that $X \rightarrow Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF: schema in this normal form has no redundancy due to FD’s

Multivalued dependencies

- A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

 \begin{array}{|c|c|c|}
 \hline
 x & y & z \\
 \hline
 1 & 1 & 1 \\
 1 & 2 & 2 \\
 2 & 3 & 3 \\
 \hline
 \end{array}

 Must be in R too

MVD examples

Student $(SID, CID, club)$

- $SID \rightarrow CID$
- $SID \rightarrow club$
 - Intuition: given SID, CID and club are “independent”
- $SID, CID \rightarrow club$
 - Trivial: $LHS \cup RHS = \text{all attributes of } R$
- $SID, CID \rightarrow SID$
 - Trivial: $LHS \supseteq RHS$

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 - If $X \rightarrow Y$, then $X \rightarrow \text{attr}(R) - X - Y$
- MVD augmentation:
 - If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- MVD transitivity:
 - If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$
- Replication (FD is MVD):
 - If $X \rightarrow Y$, then $X \rightarrow Y$ Try proving things using these!
- Coalescence:
 - If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$
An elegant solution: chase
- Given a set of FD’s and MVD’s \(D\), does another dependency \(d\) (FD or MVD) follow from \(D\)?
- Procedure
 - Start with the hypothesis of \(d\), and treat them as “seed” tuples in a relation
 - Apply the given dependencies in \(D\) repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of \(d\), we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase
- In \(R(A, B, C, D)\), does \(A \rightarrow B\) and \(B \rightarrow C\) imply that \(A \rightarrow C\)?

Another proof by chase
- In \(R(A, B, C, D)\), does \(A \rightarrow B\) and \(B \rightarrow C\) imply that \(A \rightarrow C\)?

Counterexample by chase
- In \(R(A, B, C, D)\), does \(A \rightarrow BC\) and \(CD \rightarrow B\) imply that \(A \rightarrow B\)?

4NF
- A relation \(R\) is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD \(X \rightarrow Y\) in \(R\), \(X\) is a superkey
 - That is, all FD’s and MVD’s follow from “key \(\rightarrow\) other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)
- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm
- Find a 4NF violation
 - A non-trivial MVD \(X \rightarrow Y\) in \(R\) where \(X\) is not a superkey
 - Decompose \(R\) into \(R_1\) and \(R_2\), where
 - \(R_1\) has attributes \(X \cup Y\)
 - \(R_2\) has attributes \(X \cup Z\) (\(Z\) contains attributes not in \(X\) or \(Y\))
 - Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless
4NF decomposition example

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>chess</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>golf</td>
</tr>
</tbody>
</table>

4NF violation: \(\text{SID} \rightarrow \text{CID} \)

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS116</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS114</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>chess</td>
</tr>
<tr>
<td>123</td>
<td>CPS116</td>
<td>golf</td>
</tr>
</tbody>
</table>

Summary

- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!
- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic