Data Warehousing and Data Mining

CPS 116
Introduction to Database Systems

Announcements (December 1)
- Homework #4 due today
 - Sample solution available Thursday
- Course project demo period has begun!
 - Check email for your scheduled slot
 - Check course website for what to submit
- Final exam next Tuesday, Dec. 8, 9am-12pm
 - Again, open book, open notes
 - Focus on the second half of the course
 - Sample final (from last year) available today
 - Sample final solution available Thursday
- Course evaluations

Data integration
- Data resides in many distributed, heterogeneous OLTP (On-Line Transaction Processing) sources
 - Sales, inventory, customer, …
 - NC branch, NY branch, CA branch, …
- Need to support OLAP (On-Line Analytical Processing) over an integrated view of the data
- Possible approaches to integration
 - Eager: integrate in advance and store the integrated data at a central repository called the data warehouse
 - Lazy: integrate on demand; process queries over distributed sources—mediated or federated systems

OLTP versus OLAP
- **OLTP**
 - Mostly updates
 - Short, simple transactions
 - Clerical users
 - Goal: ACID, transaction throughput
- **OLAP**
 - Mostly reads
 - Long, complex queries
 - Analysts, decision makers
 - Goal: fast queries

Implications on database design and optimization?
- OLAP databases do not care much about redundancy
 - "Denormalize" tables
 - Many, many indexes
 - Precomputed query results

Eager versus lazy integration
- **Eager (warehousing)**
 - In advance: before queries
 - Copy data from sources
 - Answer could be stale
 - Need to maintain consistency
 - Query processing is local to the warehouse
 - Faster
 - Can operate when sources are unavailable
- **Lazy**
 - On demand: at query time
 - Leave data at sources
 - Answer is more up-to-date
 - No need to maintain consistency
 - Sources participate in query processing
 - Slower
 - Interferes with local processing

Maintaining a data warehouse
- The "ETL" process
 - Extraction: extract relevant data and/or changes from sources
 - Transformation: transform data to match the warehouse schema
 - Loading: integrate data/changes into the warehouse
- Approaches
 - Recomputation
 - Easy to implement; just take periodic dumps of the sources, say, every night
 - What if there is no "night," e.g., a global organization?
 - What if recomputation takes more than a day?
 - Incremental maintenance
 - Compute and apply only incremental changes
 - Fast if changes are small
 - Not easy to do for complicated transformations
 - Need to detect incremental changes at the sources
“Star” schema of a data warehouse

Dimension table

<table>
<thead>
<tr>
<th>Product</th>
<th>Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Name</td>
</tr>
<tr>
<td>1</td>
<td>Beer</td>
</tr>
<tr>
<td>2</td>
<td>Diaper</td>
</tr>
</tbody>
</table>

Fact table

<table>
<thead>
<tr>
<th>Product</th>
<th>Store</th>
<th>Sale</th>
<th>CID</th>
<th>PID</th>
<th>SID</th>
<th>qty</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beer</td>
<td>Store</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Diaper</td>
<td>Store</td>
<td>12</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

Dimension table

<table>
<thead>
<tr>
<th>Customer</th>
<th>Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Name</td>
</tr>
<tr>
<td>1</td>
<td>Amy</td>
</tr>
<tr>
<td>2</td>
<td>Ben</td>
</tr>
<tr>
<td>3</td>
<td>Coy</td>
</tr>
</tbody>
</table>

Data cube

Simplified schema: Sale (CID, PID, SID, qty)

Completing the cube—plane

Total quantity of sales for each product in each store

```
SELECT PID, SID, SUM(qty) FROM Sale
GROUP BY PID, SID;
```

Completing the cube—axis

Total quantity of sales for each product

```
SELECT PID, SUM(qty) FROM Sale GROUP BY PID;
```

Completing the cube—origin

Total quantity of sales

```
SELECT SUM(qty) FROM Sale;
```

CUBE operator

- Sale (CID, PID, SID, qty)
- Proposed SQL extension:
  ```
  SELECT SUM(qty) FROM Sale GROUP BY CUBE CID, PID, SID;
  ```
 - Output contains:
 - Normal groups produced by GROUP BY
      ```
      (6, p2, s1) = 2
      ```
 - Groups with one or more ALL's
      ```
      (6, ALL, ALL) = 11
      ```
 - Can you write a CUBE query using only GROUP BY's?

Aggregation lattice

Materialized views

- Computing GROUP BY and CUBE aggregates is expensive
- OLAP queries perform these operations over and over again

- Idea: precompute and store the aggregates as materialized views
 - Maintained automatically as base data changes
 - Called automatic summary tables in DB2

Selecting views to materialize

- Factors in deciding what to materialize
 - What is its storage cost?
 - What is its update cost?
 - Which queries can benefit from it?
 - How much can a query benefit from it?

- Example
 - GROUP BY ∅ is small, but not useful to most queries
 - GROUP BY CID, PID, SID is useful to any query, but too large to be beneficial

Harinarayan et al., “Implementing Data Cubes Efficiently.” SIGMOD 1996

Data mining

- Data → knowledge
- DBMS meets AI and statistics
- Clustering, prediction (classification and regression), association analysis, outlier analysis, evolution analysis, etc.
 - Usually complex statistical “queries” that are difficult to answer → often specialized algorithms outside DBMS

- We will focus on frequent itemset mining

Mining frequent itemsets

- Given: a large database of transactions, each containing a set of items
 - Example: market baskets
- Find all frequent itemsets
 - A set of items X is frequent if no less than $\min\%$ of all transactions contain X
 - Examples: {diaper, beer}, {scanner, color printer}

First try

- A naïve algorithm
 - Keep a running count for each possible itemset
 - For each transaction T, and for each itemset X, if T contains X then increment the count for X
 - Return itemsets with large enough counts
- Problem: The number of itemsets is huge!
 - 2^n, where n is the number of items
- Think: How do we prune the search space?
The Apriori property

- All subsets of a frequent itemset must also be frequent
 - Because any transaction that contains \(X \) must also contain subsets of \(X \)
- If we have already verified that \(X \) is infrequent, there is no need to count \(X \)'s supersets because they must be infrequent too

The Apriori algorithm

Multiple passes over the transactions

- Pass \(k \) finds all frequent \(k \)-itemsets (itemset of size \(k \))
- Use the set of frequent \(k \)-itemsets found in pass \(k \) to construct candidate \((k+1)\)-itemsets to be counted in pass \((k+1)\)
 - A \((k+1)\)-itemset is a candidate only if all its subsets of size \(k \) are frequent
Example: final answer

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>6</td>
</tr>
<tr>
<td>{B}</td>
<td>7</td>
</tr>
<tr>
<td>{C}</td>
<td>6</td>
</tr>
<tr>
<td>{D}</td>
<td>2</td>
</tr>
<tr>
<td>{E}</td>
<td>2</td>
</tr>
<tr>
<td>{A,B}</td>
<td>4</td>
</tr>
<tr>
<td>{A,C}</td>
<td>4</td>
</tr>
<tr>
<td>{A,E}</td>
<td>2</td>
</tr>
<tr>
<td>{B,C}</td>
<td>4</td>
</tr>
<tr>
<td>{B,D}</td>
<td>2</td>
</tr>
<tr>
<td>{B,E}</td>
<td>2</td>
</tr>
</tbody>
</table>

Frequent 1-itemsets

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>2</td>
</tr>
<tr>
<td>{A,B,E}</td>
<td>2</td>
</tr>
</tbody>
</table>

Frequent 2-itemsets

Summary

- Data warehousing
 - Eagerly integrate data from operational sources and store a redundant copy to support OLAP
 - OLAP vs. OLTP: different workload → different degree of redundancy

- Data mining
 - Only covered frequent itemset counting
 - Skipped many other techniques (clustering, classification, regression, etc.)
 - One key difference from statistics and machine learning: massive datasets and I/O-efficient algorithms