Relational Model & Algebra

CompSci 316
Introduction to Database Systems

Announcements (Thur. Aug. 30)

- Homework #1 will be assigned Tuesday
 - Our VM is ready for download!
- Office hours: see course website
 - Different times on different days!
- Lecture notes
 - The “notes” version can be (printed out and) used for note-taking; the “complete” version will be posted after lecture, so be selective in what you copy down
- Duke Community Standard
- Still working on the room issue…

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
 - Set-valued attributes not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 * Two tuples are identical if they agree on all attributes

* Simplicity is a virtue!
Example

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>name</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
</tr>
</tbody>
</table>

Ordering of rows doesn’t matter (even though the output is always in some order)

Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema
 - Compare to type and objects of type in a programming language

Example

- Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)
- Instance
 - [{142, Bart, 10, 2.3}, {123, Milhouse, 10, 3.1}, ...]
 - [{CPS316, Intro to Database Systems}, ...]
 - [{(142, CPS316), (142, CPS310}, ...]
Relational algebra
A language for querying relational databases based on operators:

- Core set of operators:
 - Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection
- Input: a table \(R \)
- Notation: \(\sigma_p R \)
 - \(p \) is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as \(R \), but only rows of \(R \) that satisfy \(p \)

Selection example
- Students with GPA higher than 3.0
 \(\sigma_{\text{GPA}>3.0} \text{Student} \)
More on selection

- Selection predicate in general can include any column of R, constants, comparisons (\leq, etc.), and Boolean connectives (\land: and, \lor: or, and \neg: not)
 - Example: straight A students under 18 or over 21
 \[\sigma_{\text{GPA}=4.0 \land (\text{age}<18 \lor \text{age}>21)} \text{Student} \]
- But you must be able to evaluate the predicate over a single row of the input table
 - Example: student with the highest GPA
 \[\sigma_{\text{GPA}=\text{max}} \text{Student} \]

Projection

- Input: a table R
- Notation: $\pi_L R$
 - L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

Projection example

- ID's and names of all students
 \[\pi_{\text{SID, name}} \text{Student} \]
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

\[\pi_{\text{age}} \text{Student} \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

Cross product example

- \(\text{Student} \times \text{Enroll} \)
A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows).
- That means cross product is commutative, i.e., $R \times S = S \times R$ for any R and S.

Derived operator: join

(A.k.a. “theta-join”)

- Input: two tables R and S
- Notation: $R \bowtie p S$
 - p is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p
- Shorthand for $\sigma_p (R \times S)$

Join example

- Info about students, plus CID’s of their courses

 \[
 \text{Student} \bowtie \sigma_{\text{Student} _\text{SID} = \text{Enroll} _\text{SID}} \text{ Enroll}
 \]

 Use `table_name.column_name` syntax to disambiguate identically named columns from different input tables.
Derived operator: natural join

- **Input:** two tables R and S
- **Notation:** $R \bowtie S$
- **Purpose:** relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- **Shorthand for** $\pi_L(R \bowtie_p S)$, where
 - p equates all attributes common to R and S
 - L is the union of all attributes from R and S, with duplicate attributes removed

Natural join example

- **Student \bowtie Enroll**
 - $\pi_{SID \bowtie \text{name}, \text{age}, \text{GPA}, \text{CID}}(\text{Student \bowtie Enroll, SID} \bowtie \text{Enroll, SID})$

Union

- **Input:** two tables R and S
- **Notation:** $R \cup S$
 - R and S must have identical schema
- **Output:**
 - Has the same schema as R and S
 - Contains all rows in R and all rows in S, with duplicate rows eliminated
Difference

- Input: two tables \(R \) and \(S \)
- Notation: \(R - S \)
 - \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows in \(R \) that are not found in \(S \)

Derived operator: intersection

- Input: two tables \(R \) and \(S \)
- Notation: \(R \cap S \)
 - \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows that are in both \(R \) and \(S \)
- Shorthand for

Renaming

- Input: a table \(R \)
- Notation: \(\rho_{S}^{R} \), \(\rho_{(A_{1}, A_{2}, \ldots)}^{R} \) or \(\rho_{S(A_{1}, A_{2}, \ldots)}^{R} \)
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as \(R \)
- Used to
 - Avoid confusion caused by identical column names
 - Create identical column names for natural joins
Renaming example

- SID’s of students who take at least two courses
 \(\text{Enroll} \bowtie_2 \text{Enroll}\)

Expression tree syntax:

Summary of core operators

- Selection: \(\sigma_p R\)
- Projection: \(\pi_k R\)
- Cross product: \(R \times S\)
- Union: \(R \cup S\)
- Difference: \(R - S\)
- Renaming: \(\rho_{S(A_1A_2...)}R\)
 - Does not really add “processing” power

Summary of derived operators

- Join: \(R \bowtie_p S\)
- Natural join: \(R \bowtie S\)
- Intersection: \(R \cap S\)

- Many more
 - Semijoin, anti-semijoin, quotient, …
An exercise

- Names of students in Lisa’s classes

Writing a query bottom-up:

\[\text{Their names} \]

Students in Lisa’s classes

Lisa’s classes

Who’s Lisa?

\[\sigma_{\text{name} = \text{Lisa}} \]

\[\text{Student} \]

Another exercise

- CID’s of the courses that Lisa is NOT taking

Writing a query top-down:

\[\pi_C ID \]

Course

\[\sigma_{\text{name} = \text{Lisa}} \]

\[\text{Student} \]

A trickier exercise

- Who has the highest GPA?

A deeper question:

When (and why) is “−” needed?
Monotone operators

- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain "correct" when more rows are added to the input
- Formally, for a monotone operator \(op \):
 \[R \subseteq R' \implies \text{op}(R) \subseteq \text{op}(R') \] for any \(R, R' \)

Classification of relational operators

- Selection: \(\sigma_R \)
- Projection: \(\pi_R \)
- Cross product: \(R \times S \)
- Join: \(R \bowtie_p S \)
- Natural join: \(R \bowtie S \)
- Union: \(R \cup S \)
- Difference: \(R - S \)
- Intersection: \(R \cap S \)

Why is “−” needed for highest GPA?

- Composition of monotone operators produces a monotone query
 - Old output rows remain "correct" when more rows are added to the input
- Is highest-GPA query monotone?
Why do we need core operator X?

- Difference
 - The only non-monotone operator
- Cross product
- Union
- Selection? Projection?

Extensions to relational algebra

- Duplicate handling (“bag algebra”)
- Grouping and aggregation
- Extension (or extended projection) to allow new attribute values to be computed

> All these will come up when we talk about SQL.
> But for now we will stick with standard relational algebra without these extensions

Why is r.a. a good query language?

- Simple
 - A small set of core operators whose semantics are easy to grasp
- Declarative?
 - Yes, compared with older languages like CODASYL.
 - Though operators do look somewhat “procedural”
- Complete?
 - With respect to what?
Relational calculus

- \[\{ s . S I D \mid s \in \text{Student} \wedge \neg (\exists s' \in \text{Student} : s . G P A < s' . G P A) \}, \text{or} \]
 \[\{ s . S I D \mid s \in \text{Student} \wedge (\forall s' \in \text{Student} : s . G P A \geq s' . G P A) \} \]

- Relational algebra = “safe” relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa

- Example of an unsafe relational calculus query
 - \[\{ s . \text{name} \mid \neg (s \in \text{Student}) \} \]
 - Cannot evaluate this query just by looking at the database

Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation \(\text{Parent(\text{parent}, \text{child})} \), who are Bart’s ancestors?

- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level

- Recursion is added to SQL nevertheless!