Relational Model & Algebra

CompSci 316
Introduction to Database Systems

Announcements (Thur. Aug. 30)

- Homework #1 will be posted soon
 - Our VM is ready for download!
- Office hours: see course website
 - Different times on different days!
- Lecture notes
 - The “notes” version can be (printed out and) used for note-taking; the “complete” version will be posted after lecture, so be selective in what you copy down
- Duke Community Standard
- Still working on the room issue…

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
 - Set-valued attributes not allowed
- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are identical if they agree on all attributes
- Simplicity is a virtue!

Example

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS316</td>
<td>Intro. to Database Systems</td>
</tr>
<tr>
<td>CPS330</td>
<td>Analysis of Algorithms</td>
</tr>
<tr>
<td>CPS310</td>
<td>Computer Networks</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SID</th>
<th>Enroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS316</td>
</tr>
<tr>
<td>142</td>
<td>CPS310</td>
</tr>
<tr>
<td>123</td>
<td>CPS316</td>
</tr>
<tr>
<td>857</td>
<td>CPS330</td>
</tr>
<tr>
<td>456</td>
<td>CPS310</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

- Schema
 - Student (SID integer, name string, age integer, GPA float)
 - Course (CID string, title string)
 - Enroll (SID integer, CID integer)
- Instance
 - `{(142, Bart, 10, 2.3), (123, Milhouse, 10, 3.1), ...}`
 - `{(CPS316, Intro. to Database Systems), ...}`
 - `{(142, CPS316), (142, CPS310), ...}`

Schema versus instance

- Schema (metadata)
 - Specification of how data is to be structured logically
 - Defined at set-up
 - Rarely changes
- Instance
 - Content
 - Changes rapidly, but always conforms to the schema
- Compare to type and objects of type in a programming language
Relational algebra
A language for querying relational databases based on operators:

- **Core set of operators:**
 - Selection, projection, cross product, union, difference, and renaming
- **Additional, derived operators:**
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Selection
- Input: a table R
- Notation: $\sigma_p R$
 - p is called a selection condition/predicate
- Purpose: filter rows according to some criteria
- Output: same columns as R, but only rows of R that satisfy p

Selection example
- Students with GPA higher than 3.0
 \[\sigma_{\text{GPA}>3.0} \text{Student} \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

More on selection
- Selection predicate in general can include any column of R, constants, comparisons (\leq, \geq, etc.), and Boolean connectives (\land: and, \lor: or, and \neg: not)
 - Example: straight A students under 18 or over 21
 \[\sigma_{\text{GPA}=4.0 \land (\text{age}<18 \lor \text{age}>21)} \text{Student} \]
- But you must be able to evaluate the predicate over a single row of the input table
 - Example: student with the highest GPA
 \[\sigma_{\text{GPA}=\text{max}} \text{Student} \]

Projection
- Input: a table R
- Notation: $\pi_L R$
 - L is a list of columns in R
- Purpose: select columns to output
- Output: same rows, but only the columns in L

Projection example
- ID’s and names of all students
 \[\pi_{\text{SID, name}} \text{Student} \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>
More on projection

- Duplicate output rows are removed (by definition)
 - Example: student ages

\[\pi_{\text{age}} \text{Student} \]

Cross product

- Input: two tables \(R \) and \(S \)
- Notation: \(R \times S \)
- Purpose: pairs rows from two tables
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) (concatenation of \(r \) and \(s \))

A note on column ordering

- The ordering of columns in a table is considered unimportant (as is the ordering of rows)
- That means cross product is commutative, i.e., \(R \times S = S \times R \) for any \(R \) and \(S \)

Derived operator: join

(A.k.a. “theta-join”)

- Input: two tables \(R \) and \(S \)
- Notation: \(R \bowtie_p S \)
 - \(p \) is called a join condition/predicate
- Purpose: relate rows from two tables according to some criteria
- Output: for each row \(r \) in \(R \) and each row \(s \) in \(S \), output a row \(rs \) if \(r \) and \(s \) satisfy \(p \)
- Shorthand for \(\sigma_p (R \times S) \)

Join example

- Info about students, plus CID’s of their courses

\[\text{Student} \bowtie \text{Enroll} \]

Use table name.column_name syntax
to disambiguate identically named columns from different input tables
Derived operator: natural join

- Input: two tables \(R \) and \(S \)
- Notation: \(R \bowtie S \)
- Purpose: relate rows from two tables, and
 - Enforce equality on all common attributes
 - Eliminate one copy of common attributes
- Shorthand for \(\pi_L(R \bowtie_p S) \), where
 - \(p \) equates all attributes common to \(R \) and \(S \)
 - \(L \) is the union of all attributes from \(R \) and \(S \), with
duplicate attributes removed

Natural join example

\[\text{Student} \bowtie \text{Enroll} = \pi_{\text{SID, name, age, GPA, CID}}(\text{Student} \bowtie \pi_{\text{SID=Enroll.SID}} \text{Enroll}) \]

<table>
<thead>
<tr>
<th>Student</th>
<th>Enroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Union

- Input: two tables \(R \) and \(S \)
- Notation: \(R \cup S \)
- \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows in \(R \) and all rows in \(S \), with duplicate
 rows eliminated

Difference

- Input: two tables \(R \) and \(S \)
- Notation: \(R - S \)
- \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows in \(R \) that are not found in \(S \)

Derived operator: intersection

- Input: two tables \(R \) and \(S \)
- Notation: \(R \cap S \)
- \(R \) and \(S \) must have identical schema
- Output:
 - Has the same schema as \(R \) and \(S \)
 - Contains all rows that are in both \(R \) and \(S \)
- Shorthand for \(R - (R - S) \)
- Also equivalent to \(S - (S - R) \)
- And to \(R \bowtie S \)

Renaming

- Input: a table \(R \)
- Notation: \(\rho_p R \) or \(\rho_{\{A_1, A_2, \ldots\}} R \)
- Purpose: rename a table and/or its columns
- Output: a renamed table with the same rows as \(R \)
- Used to
 - Avoid confusion caused by identical column names
 - Create identical columns names for natural joins
Renaming example

- SID's of students who take at least two courses

\[\text{Enroll} \bowtie_2 \text{Enroll} \]

\[\pi_{\text{SID}}(\text{Enroll} \bowtie_2 \text{Enroll}) \]

Expression tree syntax:

\[\pi_{\text{SID}_1} \bowtie_2 \text{Enroll} \]

\[\rho_{\text{Enroll}(\text{SID}_1, \text{CID}_1)} \]

\[\rho_{\text{Enroll}(\text{SID}_2, \text{CID}_2)} \]

Summary of core operators

- Selection: \(\sigma_P \mathcal{R} \)
- Projection: \(\pi_L \mathcal{R} \)
- Cross product: \(\mathcal{R} \times \mathcal{S} \)
- Union: \(\mathcal{R} \cup \mathcal{S} \)
- Difference: \(\mathcal{R} - \mathcal{S} \)
- Renaming: \(\rho_{S(A_1, A_2, \ldots)} \mathcal{R} \)
 - Does not really add “processing” power

Summary of derived operators

- Join: \(\mathcal{R} \bowtie P \mathcal{S} \)
- Natural join: \(\mathcal{R} \bowtie \mathcal{S} \)
- Intersection: \(\mathcal{R} \cap \mathcal{S} \)
- Many more
 - Semijoin, anti-semijoin, quotient, …

An exercise

- Names of students in Lisa’s classes

 Writing a query bottom-up:

 Students in Lisa’s classes \(\pi_{\text{SID}} \)
 Lisa’s classes \(\pi_{\text{CID}} \)
 Who’s Lisa? \(\sigma_{\text{name}} = “Lisa” \)

 Writing a query top-down:

 All CID’s \(\pi_{\text{CID}} \)
 CID’s of the courses that Lisa is taking \(\pi_{\text{CID}} \)

 Enroll \(\sigma_{\text{name}} = “Lisa” \)

Another exercise

- CID’s of the courses that Lisa is NOT taking

 Writing a query top-down:

 All CID’s \(\pi_{\text{CID}} \)
 CID’s of the courses that Lisa IS taking \(\pi_{\text{CID}} \)

 Enroll \(\sigma_{\text{name}} = “Lisa” \)

A trickier exercise

- Who has the highest GPA?
 - Who does NOT have the highest GPA?
 - Whose GPA is lower than somebody else’s?

A deeper question:

When (and why) is “−” needed?
Monotone operators

- If some old output rows may need to be removed
 - Then the operator is non-monotone
- Otherwise the operator is monotone
 - That is, old output rows always remain "correct" when more rows are added to the input
- Formally, for a monotone operator \(op \):
 \(R \subseteq R' \) implies \(op(R) \subseteq op(R') \) for any \(R, R' \)

Classification of relational operators

- Selection: \(\sigma_{p}R \) Monotone
- Projection: \(\pi_{j}R \) Monotone
- Cross product: \(R \times S \) Monotone
- Join: \(R \bowtie_{p} S \) Monotone
- Natural join: \(R \bowtie S \) Monotone
- Union: \(R \cup S \) Monotone
- Difference: \(R - S \) Monotone w.r.t. \(R \); non-monotone w.r.t. \(S \)
- Intersection: \(R \cap S \) Monotone

Why is “−” needed for highest GPA?

- Composition of monotone operators produces a monotone query
 - Old output rows remain "correct" when more rows are added to the input
- Is highest-GPA query monotone?
 - No!
 - Current highest GPA is 4.1
 - Add another GPA 4.2
 - Old answer is invalidated
 - So it must use difference!

Why do we need core operator \(X \)?

- Difference
 - The only non-monotone operator
- Cross product
 - The only operator that adds columns
- Union
 - The only operator that allows you to add rows?
 - A more rigorous argument?
- Selection? Projection?
 - Homework problem

Extensions to relational algebra

- Duplicate handling ("bag algebra")
- Grouping and aggregation
- Extension (or extended projection) to allow new attribute values to be computed

- All these will come up when we talk about SQL
- But for now we will stick to standard relational algebra without these extensions

Why is r.a. a good query language?

- Simple
 - A small set of core operators whose semantics are easy to grasp
- Declarative?
 - Yes, compared with older languages like CODASYL
 - Though operators do look somewhat "procedural"
- Complete?
 - With respect to what?
Relational calculus

- \(\{ s.SID \mid s \in \text{Student} \land \neg(\exists s' \in \text{Student}: s.GPA < s'.GPA) \} \), or
- \(\{ s.SID \mid s \in \text{Student} \land (\forall s' \in \text{Student}: s.GPA \geq s'.GPA) \} \)

- Relational algebra = “safe” relational calculus
 - Every query expressible as a safe relational calculus query is also expressible as a relational algebra query
 - And vice versa

- Example of an unsafe relational calculus query
 - \(\{ s.name \mid \neg(\notin \text{Student}) \} \)
 - Cannot evaluate this query just by looking at the database

Turing machine?

- Relational algebra has no recursion
 - Example of something not expressible in relational algebra: Given relation Parent(parent, child), who are Bart’s ancestors?
- Why not Turing machine?
 - Optimization becomes undecidable
 - You can always implement it at the application level
 - Recursion is added to SQL nevertheless!