SQL: Recursion

CompSci 316
Introduction to Database Systems

Announcements (Thu. Sep. 20)

- Homework #2 due in two weeks
- You can now complete Problems 1-4
- Homework #1 sample solution available
- Project idea session next Tue.
 - Send me 1-2 slides by this weekend if you want to pitch your idea to the class

A motivating example

<table>
<thead>
<tr>
<th>Parent (parent, child)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
</tr>
<tr>
<td>Marge</td>
</tr>
<tr>
<td>Abe</td>
</tr>
<tr>
<td>Lisa</td>
</tr>
<tr>
<td>Bart</td>
</tr>
</tbody>
</table>

- Example: find Bart’s ancestors
- “Ancestor” has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor

Recursion in SQL

- SQL2 had no recursion
- You can find Bart’s parents, grandparents, great grandparents, etc.
  ```sql
  SELECT p1.parent AS grandparent
  FROM Parent p1, Parent p2
  WHERE p1.child = p2.parent
  AND p2.child = 'Bart';
  ```
- But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
 - WITH clause
 - Implemented in PostgreSQL (common table expressions)

Ancestor query in SQL3

WITH
RECURSIVE Ancestor(anc, desc) AS
 (SELECT parent, child FROM Parent)
UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

Fixed point of a function

- If \(f: T \to T \) is a function from a type \(T \) to itself, a fixed point of \(f \) is a value \(x \) such that \(f(x) = x \)
- Example: What is the fixed point of \(f(x) = x/2 \)?
 - 0, because \(f(0) = 0/2 = 0 \)
- To compute a fixed point of \(f \)
 - Start with a “seed”: \(x \leftarrow x_0 \)
 - Compute \(f(x) \)
 - If \(f(x) = x \), stop: \(x \) is fixed point of \(f \)
 - Otherwise, \(x \leftarrow f(x) \); repeat
- Example: compute the fixed point of \(f(x) = x/2 \)
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … \to 0
- Doesn’t always work, but happens to work for us!
Fixed point of a query

- A query \(q \) is just a function that maps an input table to an output table, so a fixed point of \(q \) is a table \(T \) such that \(q(T) = T \).
- To compute fixed point of \(q \):
 - Start with an empty table: \(T \leftarrow \emptyset \)
 - Evaluate \(q \) over \(T \)
 - If the result is identical to \(T \), stop; \(T \) is a fixed point
 - Otherwise, let \(T \) be the new result; repeat

\(\emptyset \) Starting from \(\emptyset \) produces the unique minimal fixed point (assuming \(q \) is monotone).

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
- We stop when no new facts can be proven

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated \(Ancestor \) rows with \(Parent \)
 - For non-linear recursion, need to join newly generated \(Ancestor \) rows with all existing \(Ancestor \) rows
- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: \(a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \)
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps
 - More work: e.g., \(a \rightarrow d \) has two different derivations

Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear:

\[
\begin{align*}
\text{WITH RECURSIVE Ancestor(anc, desc) AS} & \quad \text{WITH RECURSIVE Ancestor(anc, desc) AS} \\
\left(\text{SELECT parent, child FROM Parent} \right) & \quad \left(\text{SELECT parent, child FROM Parent} \right) \\
\quad \text{UNION} & \quad \text{UNION} \\
\left(\text{SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2} \right) & \quad \left(\text{SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2} \right) \\
\quad \text{WHERE a1.desc = a2.anc} & \quad \text{WHERE a1.desc = a2.anc} \\
\end{align*}
\]

- Linear:

\[
\begin{align*}
\text{WITH RECURSIVE Ancestor(anc, desc) AS} & \quad \text{WITH RECURSIVE Ancestor(anc, desc) AS} \\
\left(\text{SELECT parent, child FROM Parent} \right) & \quad \left(\text{SELECT parent, child FROM Parent} \right) \\
\quad \text{UNION} & \quad \text{UNION} \\
\left(\text{SELECT anc, child FROM Ancestor, Parent} \right) & \quad \left(\text{SELECT anc, child FROM Ancestor, Parent} \right) \\
\quad \text{WHERE desc = parent} & \quad \text{WHERE desc = parent} \\
\end{align*}
\]

Mutual recursion example

- Table \(\text{Natural} \(n \)) contains 1, 2, \ldots, 100
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an odd number

\[
\begin{align*}
\text{WITH RECURSIVE Even(n) AS} & \quad \text{WITH RECURSIVE Even(n) AS} \\
\left(\text{SELECT n FROM Natural} \right) & \quad \left(\text{SELECT n FROM Natural} \right) \\
\quad \text{WHERE n = ANY(SELECT n+1 FROM Odd))}, & \quad \text{WHERE n = ANY(SELECT n+1 FROM Odd))} \\
\text{RECURSIVE Odd(n) AS} & \quad \text{RECURSIVE Odd(n) AS} \\
\left(\text{SELECT n FROM Natural WHERE n = 1} \right) & \quad \left(\text{SELECT n FROM Natural WHERE n = 1} \right) \\
\text{UNION} & \quad \text{UNION} \\
\left(\text{SELECT n FROM Natural WHERE n = ANY(SELECT n+1 FROM Even))} \right) & \quad \left(\text{SELECT n FROM Natural WHERE n = ANY(SELECT n+1 FROM Even))} \right) \\
\end{align*}
\]
Operational semantics of WITH

 irm

 1. \(R_i \leftarrow \emptyset, \ldots, R_n \leftarrow \emptyset \)
 2. Evaluate \(Q_i, \ldots, Q_n \) using the current contents of \(R_i, \ldots, R_n \):
 \(R_i^{\text{new}} \leftarrow Q_i, \ldots, R_n^{\text{new}} \leftarrow Q_n \)
 3. If \(R_i^{\text{new}} \neq R_i \) for any \(i \):
 3.1. \(R_i \leftarrow R_i^{\text{new}}, \ldots, R_n \leftarrow R_n^{\text{new}} \)
 3.2. Go to 2.
 4. Compute \(Q \) using the current contents of \(R_i, \ldots, R_n \) and output the result.

Computing mutual recursion

WITH RECURSIVE Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
 RECURSIVE Odd(n) AS
 ((SELECT n FROM Natural
 WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))

% Even\(\emptyset\), Odd\(\emptyset\)
% Even\(\emptyset\), Odd\(\{1\}\)
% Even\(\{2\}\), Odd\(\{1\}\)
% Even\(\{2\}\), Odd\(\{1, 3\}\)
% Even\(\{2, 4\}\), Odd\(\{1, 3\}\)
% Even\(\{2, 4\}\), Odd\(\{1, 3, 5\}\)
% ...

Fixed points are not unique

WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))

% parent child
% Homer Bart
% Homer Lisa
% Marge Bart
% Marge Lisa
% Abe Homer
% Ape Abe
% ...

Fixed-point iteration does not converge

WITH RECURSIVE Scholarship(SID) AS
 (SELECT SID FROM Student
 WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
 RECURSIVE DeansList(SID) AS
 (SELECT SID FROM Student
 WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

<table>
<thead>
<tr>
<th>Student</th>
<th>Scholarship</th>
<th>DeansList</th>
<th>Scholarship</th>
<th>DeansList</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>name</td>
<td>age</td>
<td>GPA</td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Jessica</td>
<td>10</td>
<td>4.2</td>
<td></td>
</tr>
</tbody>
</table>

Multiple minimal fixed points

WITH RECURSIVE Scholarship(SID) AS
 (SELECT SID FROM Student
 WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
 RECURSIVE DeansList(SID) AS
 (SELECT SID FROM Student
 WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

<table>
<thead>
<tr>
<th>Student</th>
<th>Scholarship</th>
<th>DeansList</th>
<th>Scholarship</th>
<th>DeansList</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>name</td>
<td>age</td>
<td>GPA</td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>999</td>
<td>Jessica</td>
<td>10</td>
<td>4.2</td>
<td></td>
</tr>
</tbody>
</table>

Mixing negation with recursion

IF \(q \) is non-monotone:
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—we wouldn’t know which one to pick as answer!
 - Example: reward students with GPA higher than 3.9
 - Those not on the Dean’s List should get a scholarship
 - Those without scholarships should be on the Dean’s List
 - WITH RECURSIVE Scholarship(SID) AS
 (SELECT SID FROM Student
 WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
 RECURSIVE DeansList(SID) AS
 (SELECT SID FROM Student
 WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))
Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WITH
 - A directed edge \(R \rightarrow S \) if \(R \) is defined in terms of \(S \)
 - Label the directed edge “\(-\)” if the query defining \(R \) is not monotone with respect to \(S \)
- Legal SQL3 recursion: no cycle containing a “\(-\)” edge
 - Called stratified negation
- Bad mix: a cycle with at least one edge labeled “\(-\)”

Stratified negation example

- Find pairs of persons with no common ancestors

\[
\begin{align*}
\text{WITH RECURSIVE Ancestor}(\text{anc}, \text{desc}) \text{ AS} & \quad \text{Ancestor} \leftarrow \text{Person} \\
((\text{SELECT parent, child FROM Parent}) \cup (\text{SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2 WHERE a1.desc = a2.anc})), \\
\text{Person}(\text{person}) \text{ AS} & \quad \text{Person} \leftarrow \text{Ancestor} \cup \text{Person} \\
((\text{SELECT parent FROM Parent}) \cup (\text{SELECT child FROM Parent})), \\
\text{NoCommonAnc}(\text{person1, person2}) \text{ AS} & \quad \text{NoCommonAnc} \leftarrow \text{Person} \cup \text{Person} \\
((\text{SELECT p1.person, p2.person FROM Person p1, Person p2 WHERE p1.person \neq p2.person}) \setminus (\text{SELECT a1.desc, a2.desc FROM Ancestor a1, Ancestor a2 WHERE a1.anc = a2.anc})), \\
\text{SELECT \ast FROM NoCommonAnc;}
\end{align*}
\]

Evaluating stratified negation

- The stratum of a node \(R \) is the maximum number of “\(-\)” edges on any path from \(R \) in the dependency graph
 - Ancestor: stratum 0
 - Person: stratum 0
 - NoCommonAnc: stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: Ancestor and Person
 - Stratum 1: NoCommonAnc
- Intuitively, there is no negation within each stratum

Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \(\emptyset \)
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)