Query Processing

CompSci 316
Introduction to Database Systems

Announcements (Tue. Nov. 13)
- Project Milestone #2 due Thursday
- Homework #4 will be assigned Thursday
- My office hours today are moved to Wed. 2-3pm

Announcements (Thu. Nov. 15)
- Project Milestone #2 due tonight
- Homework #4 assigned; due in 2½ weeks
 - You can start now

Overview
- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All have different performance characteristics and/or make different assumptions about data
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time

Notation
- Relations: \(R, S \)
- Tuples: \(r, s \)
- Number of tuples: \(|R|, |S| \)
- Number of disk blocks: \(B(R), B(S) \)
- Number of memory blocks available: \(M \)
- Cost metric
 - Number of I/O's
 - Memory requirement

Table scan
- Scan table \(R \) and process the query
 - Selection over \(R \)
 - Projection of \(R \) without duplicate elimination
- I/O's: \(B(R) \)
 - Trick for selection: stop early if it is a lookup by key
 - Memory requirement: 2 (+1 for double buffering)
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator
Nested-loop join

- \(R \bowtie S \)
- For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
- \(R \) is called the outer table; \(S \) is called the inner table
- I/O’s: \(B(R) + |R| \cdot B(S) \)
- Memory requirement: 3 (+1 for double buffering)
- Improvement: block-based nested-loop join
 - For each block of \(R \), and for each block of \(S \):
 - For each \(r \) in the \(R \) block, and for each \(s \) in the \(S \) block: …
 - I/O’s: \(B(R) + B(R) \cdot B(S) \)
 - Memory requirement: same as before

External merge sort

Remember (internal-memory) merge sort?
Problem: sort \(R \), but \(R \) does not fit in memory
- Pass 0: read \(M \) blocks of \(R \) at a time, sort them, and write out a level-0 run
 - There are \(\lceil \frac{B(R)}{M} \rceil \) level-0 sorted runs
- Pass \(i \): merge \((M - 1) \) level-(\(i - 1 \)) runs at a time, and write out a level-\(i \) run
 - \((M - 1) \) memory blocks for input, 1 to buffer output
 - \# of level-\(i \) runs = \(\lceil \frac{\text{level-}(\text{\(i - 1 \)) runs}}{M} \rceil \)
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 \rightarrow 1, 4, 7
 - 5, 2, 8 \rightarrow 2, 5, 8
 - 9, 6, 3 \rightarrow 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 \rightarrow 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 \rightarrow 1, 2, 3, 4, 5, 6, 7, 8, 9

Performance of external merge sort

- Number of passes: \(\lceil \log_{M-1} \left\lceil \frac{B(R)}{M} \right\rceil \rceil + 1 \)
- I/O’s
 - Multiply by \(2 \cdot B(R) \): each pass reads the entire relation once and writes it once
 - Subtract \(B(R) \) for the final pass
 - Roughly, this is \(O(B(R) \times \log_{M} B(R)) \)
- Memory requirement: \(M \) (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Overlap I/O with processing
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - More sequential I/O’s
 - Trade-off: larger cluster \(\rightarrow \) smaller fan-in (more passes)
Sort-merge join

- $R \bowtie_{R.A=S.B} S$
- Sort R and S by their join attributes; then merge $r, s =$ the first tuples in sorted R and S
- Repeat until one of R and S is exhausted:
 - If $r.A > s.B$ then $s =$ next tuple in S
 - If $r.A < s.B$ then $r =$ next tuple in R
- else output all matching tuples, and $r, s =$ next in R and S
- I/O’s: sorting $+ 2B(R) + 2B(S)$
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Example

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>$R \bowtie_{R.A=S.B} S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_1.A = 1$</td>
<td>$s_1.B = 1$</td>
<td>r_1s_1</td>
</tr>
<tr>
<td>$r_2.A = 3$</td>
<td>$s_2.B = 2$</td>
<td>r_2s_3</td>
</tr>
<tr>
<td>$r_3.A = 3$</td>
<td>$s_3.B = 3$</td>
<td>r_2s_4</td>
</tr>
<tr>
<td>$r_4.A = 5$</td>
<td>$s_4.B = 3$</td>
<td>r_3s_3</td>
</tr>
<tr>
<td>$r_5.A = 7$</td>
<td>$s_5.B = 8$</td>
<td>r_3s_4</td>
</tr>
<tr>
<td>$r_6.A = 7$</td>
<td></td>
<td>r_7s_5</td>
</tr>
</tbody>
</table>

Optimization of SMJ

- Idea: combine join with the (last) merge phase of merge sort
- Sort: produce sorted runs for R and S such that there are fewer than M of them total
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

Performance of SMJ

- If SMJ completes in two passes:
 - I/O’s: $3 \cdot (B(R) + B(S))$
 - Memory requirement
 - We must have enough memory to accommodate one block from each run: $M > \frac{B(R)}{M} + \frac{B(S)}{M}$
 - $M > \sqrt{B(R) + B(S)}$
- If SMJ cannot complete in two passes:
 - Repeatedly merge to reduce the number of runs as necessary before final merge and join

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Trick: produce partial aggregate values in each run, and combine them during merge
 - Partial aggregate values don’t always work though
 - Examples: $\text{SUM(DISTINCT ...)}, \text{MEDIAN(...)}$

Hash join

- $R \bowtie_{R.A=S.B} S$
- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If $r.A$ and $s.B$ get hashed to different partitions, they don’t join

Hash join considers only those along the diagonal
Partitioning phase

- Partition R and S according to the same hash function on their join attributes

```
Memory
R

Disk

M - 1 partitions of R
```

Same for S

Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

```
Disk

R partitions

Memory

S partitions
```

For each S tuple, probe and join

Performance of (two-pass) hash join

- If hash join completes in two passes:
 - I/O: $3 \cdot (B(R) + B(S))$
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 > \frac{B(R)}{M - 1}$
 - $M > \sqrt{B(R)} + 1$
 - We can always pick R to be the smaller relation, so:
 $$M > \sqrt{\min(B(R), B(S))} + 1$$

Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - See the duality in multi-pass merge sort here?

```
MEMORY

DISK

PARTITIONS
```

Hash join versus SMJ

(Assuming two-pass)

- I/O: same
- Memory requirement: hash join is lower
 $$\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)}$$
- Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- May be best if many tuples join
 - Example: non-equality joins that are not very selective
- Necessary for black-box predicates
 - Example: \ldots WHERE user_defined_pred(R, A, S, B)
Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
 - May not always work

Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Selection using index

- Equality predicate: \(\sigma_{A=\nu}(R) \)
 - Use an ISAM, B*-tree, or hash index on \(R(A) \)
- Range predicate: \(\sigma_{A\geq\nu}(R) \)
 - Use an ordered index (e.g., ISAM or B*-tree) on \(R(A) \)
 - Hash index is not applicable
- Indexes other than those on \(R(A) \) may be useful
 - Example: B*-tree index on \(R(A, B) \)
 - How about B*-tree index on \(R(B, A) \)?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: \(\pi_1(\sigma_{A>\nu}(R)) \)
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

- Consider \(\sigma_{A>\nu}(R) \) and a secondary, non-clustered index on \(R(A) \)
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of \(R \) satisfies \(A > \nu \)
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% \(|R|\)
 - I/O’s for scan-based selection: \(B(R) \)
 - Table scan wins if a block contains more than 5 tuples

Index nested-loop join

\(R \bowtie_{R.A=S.B} S \)

- Idea: use a value of \(R.A \) to probe the index on \(S(B) \)
- For each block of \(R \), and for each \(r \) in the block:
 - Use the index on \(S(B) \) to retrieve \(S \) with \(s.B = r.A \)
 - Output \(rs \)

- I/O’s: \(B(R) + |R| \cdot (\text{index lookup}) \)
 - Typically, the cost of an index lookup is 2–4 I/O’s
 - Beats other join methods if \(|R| \) is not too big
 - Better pick \(R \) to be the smaller relation
- Memory requirement: 3
Zig-zag join using ordered indexes

- $R \bowtie_{R.A=S.B} S$
- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 - Possibly skipping many keys that don’t match

B+-tree on $R(A)$

1 2 3 4 7 9 18

B+-tree on $S(B)$

1 7 9 11 12 17 19

Summary of tricks

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation
- Index
 - Selection, index nested-loop join, zig-zag join