Relational Database Design Theory

CompSci 316
Introduction to Database Systems

Announcements (Thu. Sep. 12)
- Homework #1 due next Tuesday
 - If you haven’t activated Azure, do it now!
 - All-electronic submission
- Piazza is up—use it more
 - There is also a thread for forming project teams
- Location for Rishi’s office hours has changed

Motivation

- How do we tell if a design is bad, e.g., `StudentEnroll (SID, name, CID)`?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
 - Update, insertion, deletion anomalies
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y

A set of attributes K is a key for a relation R if
- $K \rightarrow \text{all (other) attributes of } R$
 - That is, K is a “super key”
- No proper subset of K satisfies the above condition
 - That is, K is minimal

FD examples

- Address ($street_address, city, state, zip$)
- $street_address \rightarrow city, state$
- $zip \rightarrow city, state$
- $zip, state \rightarrow zip$
 - This is a trivial FD
 - Trivial FD: LHS \supseteq RHS
- $zip \rightarrow state, zip$
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \cap RHS $= \emptyset$

Keys redefined using FD’s

- Completely non-trivial FD: \emptyset
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1A_2 \ldots$)
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

StudentGrade $(SID, name, email, CID, grade)$

- $SID \rightarrow name, email$
- $email \rightarrow SID$
- $SID, CID \rightarrow grade$

(Not a good design, and we will see why later)

Example of computing closure

- \mathcal{F} includes:
 - $SID \rightarrow name, email$
 - $email \rightarrow SID$
 - $SID, CID \rightarrow grade$
 - $\{CID, email\}^+ = ?$
 - $email \rightarrow SID$
 - Add SID; closure is now $\{CID, email, SID\}$
 - $SID \rightarrow name, email$
 - Add $name, email$; closure is now $\{CID, email, SID, name\}$
 - $SID, CID \rightarrow grade$
 - Add $grade$; closure is now all the attributes in *StudentGrade*

Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

- Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from \mathcal{F}
- Is K a key of R?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is *minimal* (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Using these rules, you can prove or disprove an FD given a set of FDs
Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

$$X \rightarrow Y \leftarrow Z$$

$a \ b \ c_1$
$a \ b \ c_2$

That b is always associated with a is recorded by multiple rows: redundancy, update/insertion/deletion anomaly

Example of redundancy

- StudentGrade ($SID, name, email, CID, grade$)
- $SID \rightarrow name, email$

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS116</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS116</td>
<td>B</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS116</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS116</td>
<td>C</td>
</tr>
</tbody>
</table>

To get back to the original relation:

- Eliminates redundancy
- To get back to the original relation: ☐

Decomposition

- SID name email1 CID grade
- SID name email1 CID grade

\rightarrow Decompose relation R into relations S and T

- $\text{atts}(R) = \text{atts}(S) \cup \text{atts}(T)$
- $S = \pi_{\text{atts}(S)}(R)$
- $T = \pi_{\text{atts}(T)}(R)$

- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

- Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \subset S \bowtie T$
Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation \(R \) is in Boyce-Codd Normal Form if
 - For every non-trivial FD \(X \rightarrow Y \) in \(R \), \(X \) is a super key
 - That is, all FDs follow from "key \(\rightarrow \) other attributes"

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation (details next)
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition example

- StudentGrade (SID, name, email, CID, grade)
 - BCNF violation: SID \(\rightarrow \) name, email

- Student (SID, name, email)
 - Grade (SID, CID, grade)
 - BCNF

Another example

- StudentGrade (SID, name, email, CID, grade)
 - BCNF violation: email \(\rightarrow \) SID

- StudentID (email, SID)
 - BCNF

- StudentGrade' (email, name, CID, grade)
 - BCNF violation: email \(\rightarrow \) name

- StudentName (email, name)
 - Grade (email, CID, grade)
 - BCNF
Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:
- Anything we project always comes back in the join:
 \[R \subseteq \pi_X Y(R) \bowtie \pi_X Z(R) \]
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_X Y(R) \bowtie \pi_X Z(R) \]
 - Proof will make use of the fact that \(X \rightarrow Y \)

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF: schema in this normal form has no redundancy due to FD’s

BCNF = no redundancy?

- **Student (SID, CID, club)**
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?
 - None
 - BDNF?
 - Yes
 - Redundancies?
 - Tons!

Multivalued dependencies

- A multivalued dependency (MVD) has the form \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \)
- \(X \rightarrow Y \) means that whenever two rows in \(R \) agree on all the attributes of \(X \), then we can swap their \(Y \) components and get two new rows that are also in \(R \)

MVD examples

Student (SID, CID, club)

- \(SID \rightarrow CID \)
- \(SID \rightarrow club \)
 - Intuition: given \(SID, CID \) and club are “independent”
- \(SID, CID \rightarrow club \)
 - Trivial: \(LHS \cup RHS \) = all attributes of \(R \)
- \(SID, CID \rightarrow SID \)
 - Trivial: \(LHS \supseteq RHS \)

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 If \(X \rightarrow Y \), then \(X \rightarrow \text{atts}(R) - X - Y \)
- MVD augmentation:
 If \(X \rightarrow Y \) and \(V \subseteq W \), then \(XW \rightarrow YV \)
- MVD transitivity:
 If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z - Y \)
- Replication (FD is MVD):
 Try proving things using these?
- Coalescence:
 If \(X \rightarrow Y \) and \(Z \subseteq Y \) and there is some \(W \) disjoint from \(Y \) such that \(W \rightarrow Z \), then \(X \rightarrow Z \)
An elegant solution: chase

- Given a set of FD’s and MVD’s \(\mathcal{D} \), does another dependency \(d \) (FD or MVD) follow from \(\mathcal{D} \)?
- **Procedure**
 - Start with the hypothesis of \(d \), and treat them as “seed” tuples in a relation
 - Apply the given dependencies in \(\mathcal{D} \) repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of \(d \), we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

- In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?
- **Have**
 - \(A \rightarrow B \) gives \(a \rightarrow [b_1, c_1, d_1] \)
 - \(B \rightarrow C \) gives \(b_2 \rightarrow [c_1, d_2] \)
- **Need**
 - \(c_1 = c_2 \)

- **Counterexample by chase**
- In \(R(A, B, C, D) \), does \(A \rightarrow BC \) and \(CD \rightarrow B \) imply that \(A \rightarrow B \)?
- **Have**
 - \(A \rightarrow BC \) gives \(a \rightarrow [b_2, c_2, d_1] \)
 - \(CD \rightarrow B \) gives \(a \rightarrow [b_1, c_1, d_2] \)
- **Need**
 - \(b_1 = b_2 \)

Counterexample!

4NF

- A relation \(R \) is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD \(X \rightarrow Y \) in \(R \), \(X \) is a superkey
 - That is, all FD’s and MVD’s follow from “key \(\rightarrow \) other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)
- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey
 - Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \) (\(Z \) contains \(R \) attributes not in \(X \) or \(Y \))
 - Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless
4NF decomposition example

Student (SID, CID, club)
4NF violation: SID → CID

Enroll (SID, CID)
4NF

Join (SID, club)
4NF

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS316</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>CPS310</td>
<td>sumo</td>
</tr>
<tr>
<td>142</td>
<td>CPS316</td>
<td>ballet</td>
</tr>
<tr>
<td>123</td>
<td>CPS310</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>CPS316</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>CPS310</td>
<td>golf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>sumo</td>
</tr>
<tr>
<td>142</td>
<td>ballet</td>
</tr>
<tr>
<td>123</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>golf</td>
</tr>
</tbody>
</table>

Summary

- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!
- Other normal forms
 - 3NF: More relaxed than BCNF; will not remove redundancy if doing so makes FDs harder to enforce
 - 2NF: Slightly more relaxed than 3NF
 - 1NF: All column values must be atomic